Alternatives to Hyperledger Fabric logo

Alternatives to Hyperledger Fabric

Ethereum, Composer, Ripple, MultiChain, and MySQL are the most popular alternatives and competitors to Hyperledger Fabric.
112
138
+ 1
8

What is Hyperledger Fabric and what are its top alternatives?

Hyperledger Fabric is a permissioned blockchain platform that enables organizations to build private, secure, and scalable blockchain applications. Key features include modular architecture, support for smart contracts in various programming languages, permissioned network model, privacy and confidentiality support, and scalability with high transaction throughput. However, one limitation of Hyperledger Fabric is its complex setup and configuration process.

  1. R3 Corda: R3 Corda is a distributed ledger platform designed for businesses in the financial industry. Key features include support for privacy and scalability, easy integration with existing systems, and a focus on legal enforceability. Pros include its focus on financial applications, while cons include limited community support compared to Hyperledger Fabric.
  2. Ethereum: Ethereum is a public blockchain platform with support for smart contracts and decentralized applications (DApps). Key features include a large developer community, a wide range of use cases, and strong network security. Pros include a robust ecosystem, while cons include scalability challenges compared to Hyperledger Fabric.
  3. Corda Enterprise: Corda Enterprise is the commercial version of R3 Corda, offering additional features and support for enterprise use cases. Key features include enterprise-grade security, performance enhancements, and dedicated support. Pros include professional support, while cons include licensing costs.
  4. Quorum: Quorum is an open-source blockchain platform developed by J.P. Morgan, with a focus on privacy and data protection. Key features include private transactions, network permissioning, and support for enterprise applications. Pros include strong privacy features, while cons include limited documentation compared to Hyperledger Fabric.
  5. EOS: EOS is a blockchain platform designed for scalable decentralized applications. Key features include high transaction speeds, low fees, and support for parallel processing. Pros include fast transactions, while cons include concerns about centralization compared to Hyperledger Fabric.
  6. Tezos: Tezos is a self-amending blockchain platform that allows stakeholders to vote on protocol upgrades. Key features include on-chain governance, formal verification, and support for smart contracts. Pros include decentralized governance, while cons include concerns about the upgrade process.
  7. Stellar: Stellar is a decentralized platform that enables fast, low-cost cross-border transactions. Key features include a consensus protocol, multi-currency support, and built-in compliance tools. Pros include fast transactions, while cons include limited scalability for complex applications compared to Hyperledger Fabric.
  8. MultiChain: MultiChain is a customizable private blockchain platform for enterprise use cases. Key features include permissioned networks, data streams, and instant asset issuance. Pros include simplicity and flexibility, while cons include less focus on smart contracts compared to Hyperledger Fabric.
  9. IBM Blockchain Platform: IBM Blockchain Platform is a full-featured blockchain solution for businesses, offering support for Hyperledger Fabric and other protocols. Key features include integration with cloud services, advanced analytics, and enterprise-grade security. Pros include comprehensive features, while cons include potential vendor lock-in.
  10. IOTA: IOTA is a distributed ledger platform designed for the Internet of Things (IoT), with a focus on scalability and feeless transactions. Key features include the Tangle protocol, quantum-proof security, and IoT integration. Pros include scalability for IoT applications, while cons include concerns about centralization and network stability compared to Hyperledger Fabric.

Top Alternatives to Hyperledger Fabric

  • Ethereum
    Ethereum

    A decentralized platform for applications that run exactly as programmed without any chance of fraud, censorship or third-party interference. ...

  • Composer
    Composer

    It is a tool for dependency management in PHP. It allows you to declare the libraries your project depends on and it will manage (install/update) them for you. ...

  • Ripple
    Ripple

    It is an open source protocol which is designed to allow fast and cheap transactions. ...

  • MultiChain
    MultiChain

    It is a platform that helps users to establish a certain private Blockchains that can be used by the organizations for financial transactions. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

Hyperledger Fabric alternatives & related posts

Ethereum logo

Ethereum

866
13
Open source platform to write and distribute decentralized applications
866
13
PROS OF ETHEREUM
  • 7
    Decentralized blockchain, most famous platform for DApp
  • 2
    Resistant to hash power attacks
  • 2
    Rich smart contract execution environment
  • 2
    #2 on capitalization after Bitcoin
CONS OF ETHEREUM
  • 1
    High fees and lacks scalability

related Ethereum posts

Shared insights
on
EthereumEthereumParityParity

Which is the best to use for integrating blockchain techniques into a secure cloud system: Parity, Ethereum, or hyperedge fabric?

See more
Shared insights
on
EthereumEthereumIPFS IPFS

Hey! I am building an uber clone using blockchain. I am confused about where do I store the data of the drivers and riders and transaction information. IPFS or Ethereum? or do I store the IPFS URL on Ethereum? What would be the advantages of one over the other?

See more
Composer logo

Composer

1.1K
13
Dependency Manager for PHP
1.1K
13
PROS OF COMPOSER
  • 7
    Must have dependency manager for PHP
  • 3
    Centralized autoload.php
  • 3
    Large number of libraries
CONS OF COMPOSER
    Be the first to leave a con

    related Composer posts

    Ripple logo

    Ripple

    30
    0
    A real-time gross settlement system, currency exchange and remittance network
    30
    0
    PROS OF RIPPLE
      Be the first to leave a pro
      CONS OF RIPPLE
        Be the first to leave a con

        related Ripple posts

        Shirin Hasavari
        Assistant Professor at Morgan State University · | 6 upvotes · 19.4K views
        Shared insights
        on
        RippleRippleHyperledger FabricHyperledger Fabric

        I am a faculty at Morgan State University. I would like to know the differences between Hyperledger Fabric and Ripple. I found a lot of info on Google, but they are not so clear. For example, one use case for the ripple is bank settlements. Can I have more detail about how it works for this use case? I appreciate your response.

        See more
        MultiChain logo

        MultiChain

        13
        4
        Open platform for blockchain applications
        13
        4
        PROS OF MULTICHAIN
        • 4
          No Transaction Fees
        CONS OF MULTICHAIN
          Be the first to leave a con

          related MultiChain posts

          MySQL logo

          MySQL

          126.2K
          3.8K
          The world's most popular open source database
          126.2K
          3.8K
          PROS OF MYSQL
          • 800
            Sql
          • 679
            Free
          • 562
            Easy
          • 528
            Widely used
          • 490
            Open source
          • 180
            High availability
          • 160
            Cross-platform support
          • 104
            Great community
          • 79
            Secure
          • 75
            Full-text indexing and searching
          • 26
            Fast, open, available
          • 16
            Reliable
          • 16
            SSL support
          • 15
            Robust
          • 9
            Enterprise Version
          • 7
            Easy to set up on all platforms
          • 3
            NoSQL access to JSON data type
          • 1
            Relational database
          • 1
            Easy, light, scalable
          • 1
            Sequel Pro (best SQL GUI)
          • 1
            Replica Support
          CONS OF MYSQL
          • 16
            Owned by a company with their own agenda
          • 3
            Can't roll back schema changes

          related MySQL posts

          Nick Rockwell
          SVP, Engineering at Fastly · | 46 upvotes · 4.3M views

          When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

          So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

          React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

          Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

          See more
          Tim Abbott

          We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

          We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

          And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

          I can't recommend it highly enough.

          See more
          PostgreSQL logo

          PostgreSQL

          98.9K
          3.5K
          A powerful, open source object-relational database system
          98.9K
          3.5K
          PROS OF POSTGRESQL
          • 764
            Relational database
          • 510
            High availability
          • 439
            Enterprise class database
          • 383
            Sql
          • 304
            Sql + nosql
          • 173
            Great community
          • 147
            Easy to setup
          • 131
            Heroku
          • 130
            Secure by default
          • 113
            Postgis
          • 50
            Supports Key-Value
          • 48
            Great JSON support
          • 34
            Cross platform
          • 33
            Extensible
          • 28
            Replication
          • 26
            Triggers
          • 23
            Multiversion concurrency control
          • 23
            Rollback
          • 21
            Open source
          • 18
            Heroku Add-on
          • 17
            Stable, Simple and Good Performance
          • 15
            Powerful
          • 13
            Lets be serious, what other SQL DB would you go for?
          • 11
            Good documentation
          • 9
            Scalable
          • 8
            Free
          • 8
            Reliable
          • 8
            Intelligent optimizer
          • 7
            Transactional DDL
          • 7
            Modern
          • 6
            One stop solution for all things sql no matter the os
          • 5
            Relational database with MVCC
          • 5
            Faster Development
          • 4
            Full-Text Search
          • 4
            Developer friendly
          • 3
            Excellent source code
          • 3
            Free version
          • 3
            Great DB for Transactional system or Application
          • 3
            Relational datanbase
          • 3
            search
          • 3
            Open-source
          • 2
            Text
          • 2
            Full-text
          • 1
            Can handle up to petabytes worth of size
          • 1
            Composability
          • 1
            Multiple procedural languages supported
          • 0
            Native
          CONS OF POSTGRESQL
          • 10
            Table/index bloatings

          related PostgreSQL posts

          Simon Reymann
          Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

          Our whole DevOps stack consists of the following tools:

          • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
          • Respectively Git as revision control system
          • SourceTree as Git GUI
          • Visual Studio Code as IDE
          • CircleCI for continuous integration (automatize development process)
          • Prettier / TSLint / ESLint as code linter
          • SonarQube as quality gate
          • Docker as container management (incl. Docker Compose for multi-container application management)
          • VirtualBox for operating system simulation tests
          • Kubernetes as cluster management for docker containers
          • Heroku for deploying in test environments
          • nginx as web server (preferably used as facade server in production environment)
          • SSLMate (using OpenSSL) for certificate management
          • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
          • PostgreSQL as preferred database system
          • Redis as preferred in-memory database/store (great for caching)

          The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

          • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
          • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
          • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
          • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
          • Scalability: All-in-one framework for distributed systems.
          • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
          See more
          Jeyabalaji Subramanian

          Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

          We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

          Based on the above criteria, we selected the following tools to perform the end to end data replication:

          We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

          We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

          In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

          Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

          In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

          See more
          MongoDB logo

          MongoDB

          94.1K
          4.1K
          The database for giant ideas
          94.1K
          4.1K
          PROS OF MONGODB
          • 828
            Document-oriented storage
          • 593
            No sql
          • 553
            Ease of use
          • 464
            Fast
          • 410
            High performance
          • 255
            Free
          • 218
            Open source
          • 180
            Flexible
          • 145
            Replication & high availability
          • 112
            Easy to maintain
          • 42
            Querying
          • 39
            Easy scalability
          • 38
            Auto-sharding
          • 37
            High availability
          • 31
            Map/reduce
          • 27
            Document database
          • 25
            Easy setup
          • 25
            Full index support
          • 16
            Reliable
          • 15
            Fast in-place updates
          • 14
            Agile programming, flexible, fast
          • 12
            No database migrations
          • 8
            Easy integration with Node.Js
          • 8
            Enterprise
          • 6
            Enterprise Support
          • 5
            Great NoSQL DB
          • 4
            Support for many languages through different drivers
          • 3
            Schemaless
          • 3
            Aggregation Framework
          • 3
            Drivers support is good
          • 2
            Fast
          • 2
            Managed service
          • 2
            Easy to Scale
          • 2
            Awesome
          • 2
            Consistent
          • 1
            Good GUI
          • 1
            Acid Compliant
          CONS OF MONGODB
          • 6
            Very slowly for connected models that require joins
          • 3
            Not acid compliant
          • 2
            Proprietary query language

          related MongoDB posts

          Jeyabalaji Subramanian

          Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

          We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

          Based on the above criteria, we selected the following tools to perform the end to end data replication:

          We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

          We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

          In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

          Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

          In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

          See more
          Robert Zuber

          We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

          As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

          When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

          See more
          Redis logo

          Redis

          59.8K
          3.9K
          Open source (BSD licensed), in-memory data structure store
          59.8K
          3.9K
          PROS OF REDIS
          • 887
            Performance
          • 542
            Super fast
          • 514
            Ease of use
          • 444
            In-memory cache
          • 324
            Advanced key-value cache
          • 194
            Open source
          • 182
            Easy to deploy
          • 165
            Stable
          • 156
            Free
          • 121
            Fast
          • 42
            High-Performance
          • 40
            High Availability
          • 35
            Data Structures
          • 32
            Very Scalable
          • 24
            Replication
          • 23
            Pub/Sub
          • 22
            Great community
          • 19
            "NoSQL" key-value data store
          • 16
            Hashes
          • 13
            Sets
          • 11
            Sorted Sets
          • 10
            Lists
          • 10
            NoSQL
          • 9
            Async replication
          • 9
            BSD licensed
          • 8
            Integrates super easy with Sidekiq for Rails background
          • 8
            Bitmaps
          • 7
            Open Source
          • 7
            Keys with a limited time-to-live
          • 6
            Lua scripting
          • 6
            Strings
          • 5
            Awesomeness for Free
          • 5
            Hyperloglogs
          • 4
            Runs server side LUA
          • 4
            Transactions
          • 4
            Networked
          • 4
            Outstanding performance
          • 4
            Feature Rich
          • 4
            Written in ANSI C
          • 4
            LRU eviction of keys
          • 3
            Data structure server
          • 3
            Performance & ease of use
          • 2
            Temporarily kept on disk
          • 2
            Dont save data if no subscribers are found
          • 2
            Automatic failover
          • 2
            Easy to use
          • 2
            Scalable
          • 2
            Channels concept
          • 2
            Object [key/value] size each 500 MB
          • 2
            Existing Laravel Integration
          • 2
            Simple
          CONS OF REDIS
          • 15
            Cannot query objects directly
          • 3
            No secondary indexes for non-numeric data types
          • 1
            No WAL

          related Redis posts

          Russel Werner
          Lead Engineer at StackShare · | 32 upvotes · 2.9M views

          StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

          Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

          #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

          See more
          Simon Reymann
          Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.9M views

          Our whole DevOps stack consists of the following tools:

          • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
          • Respectively Git as revision control system
          • SourceTree as Git GUI
          • Visual Studio Code as IDE
          • CircleCI for continuous integration (automatize development process)
          • Prettier / TSLint / ESLint as code linter
          • SonarQube as quality gate
          • Docker as container management (incl. Docker Compose for multi-container application management)
          • VirtualBox for operating system simulation tests
          • Kubernetes as cluster management for docker containers
          • Heroku for deploying in test environments
          • nginx as web server (preferably used as facade server in production environment)
          • SSLMate (using OpenSSL) for certificate management
          • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
          • PostgreSQL as preferred database system
          • Redis as preferred in-memory database/store (great for caching)

          The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

          • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
          • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
          • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
          • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
          • Scalability: All-in-one framework for distributed systems.
          • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
          See more