Alternatives to Microsoft SQL Server logo

Alternatives to Microsoft SQL Server

Oracle, PostgreSQL, Apache Aurora, Microsoft Access, and MariaDB are the most popular alternatives and competitors to Microsoft SQL Server.
19.9K
15.3K
+ 1
540

What is Microsoft SQL Server and what are its top alternatives?

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.
Microsoft SQL Server is a tool in the Databases category of a tech stack.

Top Alternatives to Microsoft SQL Server

  • Oracle
    Oracle

    Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • Apache Aurora
    Apache Aurora

    Apache Aurora is a service scheduler that runs on top of Mesos, enabling you to run long-running services that take advantage of Mesos' scalability, fault-tolerance, and resource isolation. ...

  • Microsoft Access
    Microsoft Access

    It is an easy-to-use tool for creating business applications, from templates or from scratch. With its rich and intuitive design tools, it can help you create appealing and highly functional applications in a minimal amount of time. ...

  • MariaDB
    MariaDB

    Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • SQLite
    SQLite

    SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

Microsoft SQL Server alternatives & related posts

Oracle logo

Oracle

2.3K
113
An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism
2.3K
113
PROS OF ORACLE
  • 44
    Reliable
  • 33
    Enterprise
  • 15
    High Availability
  • 5
    Hard to maintain
  • 5
    Expensive
  • 4
    Maintainable
  • 4
    Hard to use
  • 3
    High complexity
CONS OF ORACLE
  • 14
    Expensive

related Oracle posts

Hi. We are planning to develop web, desktop, and mobile app for procurement, logistics, and contracts. Procure to Pay and Source to pay, spend management, supplier management, catalog management. ( similar to SAP Ariba, gap.com, coupa.com, ivalua.com vroozi.com, procurify.com

We got stuck when deciding which technology stack is good for the future. We look forward to your kind guidance that will help us.

We want to integrate with multiple databases with seamless bidirectional integration. What APIs and middleware available are best to achieve this? SAP HANA, Oracle, MySQL, MongoDB...

ASP.NET / Node.js / Laravel. ......?

Please guide us

See more

I recently started a new position as a data scientist at an E-commerce company. The company is founded about 4-5 years ago and is new to many data-related areas. Specifically, I'm their first data science employee. So I have to take care of both data analysis tasks as well as bringing new technologies to the company.

  1. They have used Elasticsearch (and Kibana) to have reporting dashboards on their daily purchases and users interactions on their e-commerce website.

  2. They also use the Oracle database system to keep records of their daily turnovers and lists of their current products, clients, and sellers lists.

  3. They use Data-Warehouse with cockpit 10 for generating reports on different aspects of their business including number 2 in this list.

At the moment, I grab batches of data from their system to perform predictive analytics from data science perspectives. In some cases, I use a static form of data such as monthly turnover, client values, and high-demand products, and run my predictive analysis using Python (VS code). Also, I use Google Datastudio or Google Sheets to present my findings. In other cases, I try to do time-series analysis using offline batches of data extracted from Elastic Search to do user recommendations and user personalization.

I really want to use modern data science tools such as Apache Spark, Google BigQuery, AWS, Azure, or others where they really fit. I think these tools can improve my performance as a data scientist and can provide more continuous analytics of their business interactions. But honestly, I'm not sure where each tool is needed and what part of their system should be replaced by or combined with the current state of technology to improve productivity from the above perspectives.

See more
PostgreSQL logo

PostgreSQL

98.3K
3.5K
A powerful, open source object-relational database system
98.3K
3.5K
PROS OF POSTGRESQL
  • 764
    Relational database
  • 510
    High availability
  • 439
    Enterprise class database
  • 383
    Sql
  • 304
    Sql + nosql
  • 173
    Great community
  • 147
    Easy to setup
  • 131
    Heroku
  • 130
    Secure by default
  • 113
    Postgis
  • 50
    Supports Key-Value
  • 48
    Great JSON support
  • 34
    Cross platform
  • 33
    Extensible
  • 28
    Replication
  • 26
    Triggers
  • 23
    Multiversion concurrency control
  • 23
    Rollback
  • 21
    Open source
  • 18
    Heroku Add-on
  • 17
    Stable, Simple and Good Performance
  • 15
    Powerful
  • 13
    Lets be serious, what other SQL DB would you go for?
  • 11
    Good documentation
  • 9
    Scalable
  • 8
    Free
  • 8
    Reliable
  • 8
    Intelligent optimizer
  • 7
    Transactional DDL
  • 7
    Modern
  • 6
    One stop solution for all things sql no matter the os
  • 5
    Relational database with MVCC
  • 5
    Faster Development
  • 4
    Full-Text Search
  • 4
    Developer friendly
  • 3
    Excellent source code
  • 3
    Free version
  • 3
    Great DB for Transactional system or Application
  • 3
    Relational datanbase
  • 3
    search
  • 3
    Open-source
  • 2
    Text
  • 2
    Full-text
  • 1
    Can handle up to petabytes worth of size
  • 1
    Composability
  • 1
    Multiple procedural languages supported
  • 0
    Native
CONS OF POSTGRESQL
  • 10
    Table/index bloatings

related PostgreSQL posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.2M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Apache Aurora logo

Apache Aurora

69
0
An Apcahe Mesos framework for scheduling jobs, originally developed by Twitter
69
0
PROS OF APACHE AURORA
    Be the first to leave a pro
    CONS OF APACHE AURORA
      Be the first to leave a con

      related Apache Aurora posts

      Docker containers on Mesos run their microservices with consistent configurations at scale, along with Aurora for long-running services and cron jobs.

      See more
      Microsoft Access logo

      Microsoft Access

      79
      0
      A database management system
      79
      0
      PROS OF MICROSOFT ACCESS
        Be the first to leave a pro
        CONS OF MICROSOFT ACCESS
          Be the first to leave a con

          related Microsoft Access posts

          MariaDB logo

          MariaDB

          16.3K
          468
          An enhanced, drop-in replacement for MySQL
          16.3K
          468
          PROS OF MARIADB
          • 149
            Drop-in mysql replacement
          • 100
            Great performance
          • 74
            Open source
          • 55
            Free
          • 44
            Easy setup
          • 15
            Easy and fast
          • 14
            Lead developer is "monty" widenius the founder of mysql
          • 6
            Also an aws rds service
          • 4
            Consistent and robust
          • 4
            Learning curve easy
          • 2
            Native JSON Support / Dynamic Columns
          • 1
            Real Multi Threaded queries on a table/db
          CONS OF MARIADB
            Be the first to leave a con

            related MariaDB posts

            Tassanai Singprom

            This is my stack in Application & Data

            JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB

            My Utilities Tools

            Google Analytics Postman Elasticsearch

            My Devops Tools

            Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack

            My Business Tools

            Slack

            See more
            Joshua Dean Küpper
            CEO at Scrayos UG (haftungsbeschränkt) · | 11 upvotes · 676.7K views

            We primarily use MariaDB but use PostgreSQL as a part of GitLab , Sentry and Nextcloud , which (initially) forced us to use it anyways. While this isn't much of a decision – because we didn't have one (ha ha) – we learned to love the perks and advantages of PostgreSQL anyways. PostgreSQL's extension system makes it even more flexible than a lot of the other SQL-based DBs (that only offer stored procedures) and the additional JOIN options, the enhanced role management and the different authentication options came in really handy, when doing manual maintenance on the databases.

            See more
            MySQL logo

            MySQL

            125.4K
            3.8K
            The world's most popular open source database
            125.4K
            3.8K
            PROS OF MYSQL
            • 800
              Sql
            • 679
              Free
            • 562
              Easy
            • 528
              Widely used
            • 490
              Open source
            • 180
              High availability
            • 160
              Cross-platform support
            • 104
              Great community
            • 79
              Secure
            • 75
              Full-text indexing and searching
            • 26
              Fast, open, available
            • 16
              Reliable
            • 16
              SSL support
            • 15
              Robust
            • 9
              Enterprise Version
            • 7
              Easy to set up on all platforms
            • 3
              NoSQL access to JSON data type
            • 1
              Relational database
            • 1
              Easy, light, scalable
            • 1
              Sequel Pro (best SQL GUI)
            • 1
              Replica Support
            CONS OF MYSQL
            • 16
              Owned by a company with their own agenda
            • 3
              Can't roll back schema changes

            related MySQL posts

            Nick Rockwell
            SVP, Engineering at Fastly · | 46 upvotes · 4.1M views

            When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

            So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

            React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

            Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

            See more
            Tim Abbott

            We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

            We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

            And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

            I can't recommend it highly enough.

            See more
            SQLite logo

            SQLite

            19.1K
            535
            A software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine
            19.1K
            535
            PROS OF SQLITE
            • 163
              Lightweight
            • 135
              Portable
            • 122
              Simple
            • 81
              Sql
            • 29
              Preinstalled on iOS and Android
            • 2
              Free
            • 2
              Tcl integration
            • 1
              Portable A database on my USB 'love it'
            CONS OF SQLITE
            • 2
              Not for multi-process of multithreaded apps
            • 1
              Needs different binaries for each platform

            related SQLite posts

            Dimelo Waterson
            Shared insights
            on
            PostgreSQLPostgreSQLMySQLMySQLSQLiteSQLite

            I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.

            To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?

            See more
            Pran B.
            Fullstack Developer at Growbox · | 6 upvotes · 284.7K views

            Goal/Problem: A small mobile app (using Flutter ) for saving data offline ( some data offline) and rest data need to be synced with Cloud Firestore Tools: Cloud Firestore , SQLite Decision/Considering/Need suggestions: There is no state management in the app yet. There is a requirement to store some data offline and it should be available easily (when the phone is offline) and some data needs to stored in the cloud. I am considering using sqlflite for phone storage and firestore to sync and manage the online database. I am using flutter to build the app, I couldn't find a reliable way to use firestore cache for reading the data when phonphone is offline. So I came up with the above solution. Please suggest is this good?

            See more
            MongoDB logo

            MongoDB

            93.6K
            4.1K
            The database for giant ideas
            93.6K
            4.1K
            PROS OF MONGODB
            • 828
              Document-oriented storage
            • 593
              No sql
            • 553
              Ease of use
            • 464
              Fast
            • 410
              High performance
            • 255
              Free
            • 218
              Open source
            • 180
              Flexible
            • 145
              Replication & high availability
            • 112
              Easy to maintain
            • 42
              Querying
            • 39
              Easy scalability
            • 38
              Auto-sharding
            • 37
              High availability
            • 31
              Map/reduce
            • 27
              Document database
            • 25
              Easy setup
            • 25
              Full index support
            • 16
              Reliable
            • 15
              Fast in-place updates
            • 14
              Agile programming, flexible, fast
            • 12
              No database migrations
            • 8
              Easy integration with Node.Js
            • 8
              Enterprise
            • 6
              Enterprise Support
            • 5
              Great NoSQL DB
            • 4
              Support for many languages through different drivers
            • 3
              Schemaless
            • 3
              Aggregation Framework
            • 3
              Drivers support is good
            • 2
              Fast
            • 2
              Managed service
            • 2
              Easy to Scale
            • 2
              Awesome
            • 2
              Consistent
            • 1
              Good GUI
            • 1
              Acid Compliant
            CONS OF MONGODB
            • 6
              Very slowly for connected models that require joins
            • 3
              Not acid compliant
            • 2
              Proprietary query language

            related MongoDB posts

            Jeyabalaji Subramanian

            Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

            We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

            Based on the above criteria, we selected the following tools to perform the end to end data replication:

            We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

            We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

            In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

            Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

            In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

            See more
            Robert Zuber

            We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

            As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

            When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

            See more