What is OpenRefine and what are its top alternatives?
Top Alternatives to OpenRefine
- Trifacta
It is an Intelligent Platform that Interoperates with Your Data Investments. It sits between the data storage and processing environments and the visualization, statistical or machine learning tools used downstream ...
- R Language
R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Pandas
Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. ...
- Talend
It is an open source software integration platform helps you in effortlessly turning data into business insights. It uses native code generation that lets you run your data pipelines seamlessly across all cloud providers and get optimized performance on all platforms. ...
- RapidMiner
It is a software platform for data science teams that unites data prep, machine learning, and predictive model deployment. ...
- Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...
- Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...
OpenRefine alternatives & related posts
Trifacta
related Trifacta posts
We are a young start-up with 2 developers and a team in India looking to choose our next ETL tool. We have a few processes in Azure Data Factory but are looking to switch to a better platform. We were debating Trifacta and Airflow. Or even staying with Azure Data Factory. The use case will be to feed data to front-end APIs.
R Language
- Data analysis83
- Graphics and data visualization62
- Free53
- Great community45
- Flexible statistical analysis toolkit38
- Easy packages setup27
- Access to powerful, cutting-edge analytics27
- Interactive18
- R Studio IDE13
- Hacky9
- Shiny apps7
- Shiny interactive plots6
- Preferred Medium6
- Automated data reports5
- Cutting-edge machine learning straight from researchers4
- Machine Learning3
- Graphical visualization2
- Flexible Syntax1
- Very messy syntax6
- Tables must fit in RAM4
- Arrays indices start with 13
- Messy syntax for string concatenation2
- No push command for vectors/lists2
- Messy character encoding1
- Poor syntax for classes0
- Messy syntax for array/vector combination0
related R Language posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
I am currently trying to learn R Language for machine learning, I already have a good knowledge of Python. What resources would you recommend to learn from as a beginner in R?
Python
- Great libraries1.2K
- Readable code956
- Beautiful code840
- Rapid development783
- Large community687
- Open source431
- Elegant389
- Great community280
- Object oriented272
- Dynamic typing216
- Great standard library77
- Very fast58
- Functional programming53
- Easy to learn46
- Scientific computing45
- Great documentation35
- Matlab alternative28
- Productivity27
- Easy to read27
- Simple is better than complex23
- It's the way I think20
- Imperative19
- Free18
- Very programmer and non-programmer friendly17
- Powerfull language16
- Machine learning support16
- Fast and simple15
- Scripting14
- Explicit is better than implicit12
- Ease of development10
- Unlimited power9
- Clear and easy and powerfull9
- Import antigravity8
- Print "life is short, use python"7
- It's lean and fun to code7
- Now is better than never6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- I love snakes6
- Although practicality beats purity6
- Python has great libraries for data processing6
- Flat is better than nested6
- Great for tooling6
- Rapid Prototyping5
- Readability counts5
- Lists, tuples, dictionaries4
- Web scraping4
- CG industry needs4
- Great for analytics4
- Socially engaged community4
- Complex is better than complicated4
- Multiple Inheritence4
- Beautiful is better than ugly4
- Plotting4
- Simple and easy to learn3
- Import this3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- Easy to setup and run smooth3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Easy to learn and use3
- Generators3
- If the implementation is hard to explain, it's a bad id3
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Flexible and easy2
- It is Very easy , simple and will you be love programmi2
- Batteries included2
- Can understand easily who are new to programming2
- Powerful language for AI2
- Securit1
- Powerful0
- Still divided between python 2 and python 352
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Indentations matter a lot7
- Requires C functions for dynamic modules6
- No anonymous functions6
- Poor DSL capabilities6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- Circular import4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
Pandas
- Easy data frame management21
- Extensive file format compatibility1
related Pandas posts
Server side
We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.
Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.
Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.
Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.
Client side
UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.
State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.
Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.
Cache
- Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.
Database
- Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.
Infrastructure
- Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.
Other Tools
Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.
Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.
Should I continue learning Django or take this Spring opportunity? I have been coding in python for about 2 years. I am currently learning Django and I am enjoying it. I also have some knowledge of data science libraries (Pandas, NumPy, scikit-learn, PyTorch). I am currently enhancing my web development and software engineering skills and may shift later into data science since I came from a medical background. The issue is that I am offered now a very trustworthy 9 months program teaching Java/Spring. The graduates of this program work directly in well know tech companies. Although I have been planning to continue with my Python, the other opportunity makes me hesitant since it will put me to work in a specific roadmap with deadlines and mentors. I also found on glassdoor that Spring jobs are way more than Django. Should I apply for this program or continue my journey?
related Talend posts
RapidMiner
related RapidMiner posts
- Open-source60
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications8
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- In memory Computation2
- Machine learning libratimery, Streaming in real2
- Speed4
related Apache Spark posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :
Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )
- Ability to style search results into reports2
- Alert system based on custom query results2
- API for searching logs, running reports2
- Query engine supports joining, aggregation, stats, etc2
- Query any log as key-value pairs1
- Splunk language supports string, date manip, math, etc1
- Granular scheduling and time window support1
- Custom log parsing as well as automatic parsing1
- Dashboarding on any log contents1
- Rich GUI for searching live logs1
- Splunk query language rich so lots to learn1
related Splunk posts
I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.
We are currently exploring Elasticsearch and Splunk for our centralized logging solution. I need some feedback about these two tools. We expect our logs in the range of upwards > of 10TB of logging data.