Alternatives to Python logo

Alternatives to Python

Java, R, JavaScript, Scala, and Anaconda are the most popular alternatives and competitors to Python.
34.9K
28.1K
+ 1
5.9K

What is Python and what are its top alternatives?

Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best.
Python is a tool in the Languages category of a tech stack.
Python is an open source tool with 29K GitHub stars and 13.2K GitHub forks. Here’s a link to Python's open source repository on GitHub

Python alternatives & related posts

Java logo

Java

30.9K
20.4K
3.2K
30.9K
20.4K
+ 1
3.2K
A concurrent, class-based, object-oriented, language specifically designed to have as few implementation dependencies as possible
Java logo
Java
VS
Python logo
Python

related Java posts

C#
C#
Java
Java
Visual Studio
Visual Studio

I use C# because of the ease of designing user interfaces compared to Java. Using Visual Studio makes C# a breeze for prototyping and creating apps and I really appreciate how quickly I can turn an idea into reality. I was first introduced to C# in a special topics course and quickly started preferring it over Java. The similarities between the two made the switch easy while the added benefits C# offers made it very worth it.

See more
Kamil Kowalski
Kamil Kowalski
Engineering Manager at Fresha · | 22 upvotes · 54.5K views
atFresha EngineeringFresha Engineering
Cypress
Cypress
JavaScript
JavaScript
Elixir
Elixir
Ruby
Ruby
Java
Java
Selenium
Selenium

When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.

See more

related R posts

Eric Colson
Eric Colson
Chief Algorithms Officer at Stitch Fix · | 19 upvotes · 474.3K views
atStitch FixStitch Fix
Kafka
Kafka
PostgreSQL
PostgreSQL
Amazon S3
Amazon S3
Apache Spark
Apache Spark
Presto
Presto
Python
Python
R
R
PyTorch
PyTorch
Docker
Docker
Amazon EC2 Container Service
Amazon EC2 Container Service
#AWS
#Etl
#ML
#DataScience
#DataStack
#Data

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more

related JavaScript posts

Nick Parsons
Nick Parsons
Director of Developer Marketing at Stream · | 34 upvotes · 420.6K views
atStreamStream
Stream
Stream
Go
Go
JavaScript
JavaScript
ES6
ES6
Node.js
Node.js
Babel
Babel
Yarn
Yarn
Python
Python
#FrameworksFullStack
#Languages

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

See more
Yshay Yaacobi
Yshay Yaacobi
Software Engineer · | 29 upvotes · 518.4K views
atSolutoSoluto
Docker Swarm
Docker Swarm
.NET
.NET
F#
F#
C#
C#
JavaScript
JavaScript
TypeScript
TypeScript
Go
Go
Visual Studio Code
Visual Studio Code
Kubernetes
Kubernetes

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Scala logo

Scala

3.4K
2.5K
1.5K
3.4K
2.5K
+ 1
1.5K
A pure-bred object-oriented language that runs on the JVM