Alternatives to Scala logo

Alternatives to Scala

Kotlin, Python, Clojure, Java, and Golang are the most popular alternatives and competitors to Scala.
10.9K
7.8K
+ 1
1.5K

What is Scala and what are its top alternatives?

Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them.
Scala is a tool in the Languages category of a tech stack.
Scala is an open source tool with 14.4K GitHub stars and 3.1K GitHub forks. Here’s a link to Scala's open source repository on GitHub

Top Alternatives to Scala

  • Kotlin
    Kotlin

    Kotlin is a statically typed programming language for the JVM, Android and the browser, 100% interoperable with Java ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

  • Clojure
    Clojure

    Clojure is designed to be a general-purpose language, combining the approachability and interactive development of a scripting language with an efficient and robust infrastructure for multithreaded programming. Clojure is a compiled language - it compiles directly to JVM bytecode, yet remains completely dynamic. Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and a powerful macro system. ...

  • Java
    Java

    Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere! ...

  • Golang
    Golang

    Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language. ...

  • Apache Spark
    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • Haskell
    Haskell

    It is a general purpose language that can be used in any domain and use case, it is ideally suited for proprietary business logic and data analysis, fast prototyping and enhancing existing software environments with correct code, performance and scalability. ...

  • Groovy
    Groovy

    It is a powerful multi-faceted programming language for the JVM platform. It supports a spectrum of programming styles incorporating features from dynamic languages such as optional and duck typing, but also static compilation and static type checking at levels similar to or greater than Java through its extensible static type checker. It aims to greatly increase developer productivity with many powerful features but also a concise, familiar and easy to learn syntax. ...

Scala alternatives & related posts

Kotlin logo

Kotlin

15.4K
648
Statically typed Programming Language targeting JVM and JavaScript
15.4K
648
PROS OF KOTLIN
  • 73
    Interoperable with Java
  • 55
    Functional Programming support
  • 51
    Null Safety
  • 46
    Official Android support
  • 44
    Backed by JetBrains
  • 37
    Concise
  • 36
    Modern Multiplatform Applications
  • 28
    Expressive Syntax
  • 27
    Target to JVM
  • 26
    Coroutines
  • 24
    Open Source
  • 19
    Statically Typed
  • 19
    Practical elegance
  • 17
    Android support
  • 17
    Type Inference
  • 14
    Readable code
  • 13
    Powerful as Scala, simple as Python, plus coroutines <3
  • 12
    Better Java
  • 10
    Pragmatic
  • 9
    Lambda
  • 8
    Better language for android
  • 8
    Expressive DSLs
  • 8
    Target to JavaScript
  • 6
    Used for Android
  • 6
    Less boilerplate code
  • 5
    Fast Programming language
  • 5
    Less code
  • 4
    Native
  • 4
    Less boiler plate code
  • 4
    Friendly community
  • 4
    Functional Programming Language
  • 3
    Spring
  • 3
    Official Google Support
  • 2
    Latest version of Java
  • 1
    Well-compromised featured Java alternative
CONS OF KOTLIN
  • 7
    Java interop makes users write Java in Kotlin
  • 4
    Frequent use of {} keys
  • 2
    Hard to make teams adopt the Kotlin style
  • 2
    Nonullpointer Exception
  • 1
    Friendly community
  • 1
    Slow compiler
  • 1
    No boiler plate code

related Kotlin posts

Shivam Bhargava
AVP - Business at VAYUZ Technologies Pvt. Ltd. · | 22 upvotes · 881.8K views

Hi Community! Trust everyone is keeping safe. I am exploring the idea of building a #Neobank (App) with end-to-end banking capabilities. In the process of exploring this space, I have come across multiple Apps (N26, Revolut, Monese, etc) and explored their stacks in detail. The confusion remains to be the Backend Tech to be used?

What would you go with considering all of the languages such as Node.js Java Rails Python are suggested by some person or the other. As a general trend, I have noticed the usage of Node with React on the front or Node with a combination of Kotlin and Swift. Please suggest what would be the right approach!

See more
Jakub Olan
Node.js Software Engineer · | 17 upvotes · 816.4K views

In our company we have think a lot about languages that we're willing to use, there we have considering Java, Python and C++ . All of there languages are old and well developed at fact but that's not ideology of araclx. We've choose a edge technologies such as Node.js , Rust , Kotlin and Go as our programming languages which is some kind of fun. Node.js is one of biggest trends of 2019, same for Go. We want to grow in our company with growth of languages we have choose, and probably when we would choose Java that would be almost impossible because larger languages move on today's market slower, and cannot have big changes.

See more
Python logo

Python

245.5K
6.9K
A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
245.5K
6.9K
PROS OF PYTHON
  • 1.2K
    Great libraries
  • 964
    Readable code
  • 847
    Beautiful code
  • 788
    Rapid development
  • 691
    Large community
  • 438
    Open source
  • 393
    Elegant
  • 282
    Great community
  • 273
    Object oriented
  • 221
    Dynamic typing
  • 77
    Great standard library
  • 60
    Very fast
  • 55
    Functional programming
  • 51
    Easy to learn
  • 46
    Scientific computing
  • 35
    Great documentation
  • 29
    Productivity
  • 28
    Easy to read
  • 28
    Matlab alternative
  • 24
    Simple is better than complex
  • 20
    It's the way I think
  • 19
    Imperative
  • 18
    Very programmer and non-programmer friendly
  • 18
    Free
  • 17
    Powerfull language
  • 17
    Machine learning support
  • 16
    Fast and simple
  • 14
    Scripting
  • 12
    Explicit is better than implicit
  • 11
    Ease of development
  • 10
    Clear and easy and powerfull
  • 9
    Unlimited power
  • 8
    Import antigravity
  • 8
    It's lean and fun to code
  • 7
    Print "life is short, use python"
  • 7
    Python has great libraries for data processing
  • 6
    Rapid Prototyping
  • 6
    Readability counts
  • 6
    Now is better than never
  • 6
    Great for tooling
  • 6
    Flat is better than nested
  • 6
    Although practicality beats purity
  • 6
    I love snakes
  • 6
    High Documented language
  • 6
    There should be one-- and preferably only one --obvious
  • 6
    Fast coding and good for competitions
  • 5
    Web scraping
  • 5
    Lists, tuples, dictionaries
  • 5
    Great for analytics
  • 4
    Easy to setup and run smooth
  • 4
    Easy to learn and use
  • 4
    Plotting
  • 4
    Beautiful is better than ugly
  • 4
    Multiple Inheritence
  • 4
    Socially engaged community
  • 4
    Complex is better than complicated
  • 4
    CG industry needs
  • 4
    Simple and easy to learn
  • 3
    It is Very easy , simple and will you be love programmi
  • 3
    Flexible and easy
  • 3
    Many types of collections
  • 3
    If the implementation is easy to explain, it may be a g
  • 3
    If the implementation is hard to explain, it's a bad id
  • 3
    Special cases aren't special enough to break the rules
  • 3
    Pip install everything
  • 3
    List comprehensions
  • 3
    No cruft
  • 3
    Generators
  • 3
    Import this
  • 3
    Powerful language for AI
  • 2
    Can understand easily who are new to programming
  • 2
    Should START with this but not STICK with This
  • 2
    A-to-Z
  • 2
    Because of Netflix
  • 2
    Only one way to do it
  • 2
    Better outcome
  • 2
    Batteries included
  • 2
    Good for hacking
  • 2
    Securit
  • 1
    Procedural programming
  • 1
    Best friend for NLP
  • 1
    Slow
  • 1
    Automation friendly
  • 1
    Sexy af
  • 0
    Ni
  • 0
    Keep it simple
  • 0
    Powerful
CONS OF PYTHON
  • 53
    Still divided between python 2 and python 3
  • 28
    Performance impact
  • 26
    Poor syntax for anonymous functions
  • 22
    GIL
  • 19
    Package management is a mess
  • 14
    Too imperative-oriented
  • 12
    Hard to understand
  • 12
    Dynamic typing
  • 12
    Very slow
  • 8
    Indentations matter a lot
  • 8
    Not everything is expression
  • 7
    Incredibly slow
  • 7
    Explicit self parameter in methods
  • 6
    Requires C functions for dynamic modules
  • 6
    Poor DSL capabilities
  • 6
    No anonymous functions
  • 5
    Fake object-oriented programming
  • 5
    Threading
  • 5
    The "lisp style" whitespaces
  • 5
    Official documentation is unclear.
  • 5
    Hard to obfuscate
  • 5
    Circular import
  • 4
    Lack of Syntax Sugar leads to "the pyramid of doom"
  • 4
    The benevolent-dictator-for-life quit
  • 4
    Not suitable for autocomplete
  • 2
    Meta classes
  • 1
    Training wheels (forced indentation)

related Python posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.9M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Nick Parsons
Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.3M views

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

See more
Clojure logo

Clojure

1.9K
1.1K
A dynamic programming language that targets the Java Virtual Machine
1.9K
1.1K
PROS OF CLOJURE
  • 117
    It is a lisp
  • 100
    Persistent data structures
  • 100
    Concise syntax
  • 90
    jvm-based language
  • 89
    Concurrency
  • 81
    Interactive repl
  • 76
    Code is data
  • 61
    Open source
  • 61
    Lazy data structures
  • 57
    Macros
  • 49
    Functional
  • 23
    Simplistic
  • 22
    Immutable by default
  • 20
    Excellent collections
  • 19
    Fast-growing community
  • 15
    Multiple host languages
  • 15
    Simple (not easy!)
  • 15
    Practical Lisp
  • 10
    Because it's really fun to use
  • 10
    Addictive
  • 9
    Community
  • 9
    Web friendly
  • 9
    Rapid development
  • 9
    It creates Reusable code
  • 8
    Minimalist
  • 6
    Programmable programming language
  • 6
    Java interop
  • 5
    Regained interest in programming
  • 4
    Compiles to JavaScript
  • 3
    Share a lot of code with clojurescript/use on frontend
  • 3
    EDN
  • 1
    Clojurescript
CONS OF CLOJURE
  • 11
    Cryptic stacktraces
  • 5
    Need to wrap basically every java lib
  • 4
    Toxic community
  • 3
    Good code heavily relies on local conventions
  • 3
    Tonns of abandonware
  • 3
    Slow application startup
  • 1
    Usable only with REPL
  • 1
    Hiring issues
  • 1
    It's a lisp
  • 1
    Bad documented libs
  • 1
    Macros are overused by devs
  • 1
    Tricky profiling
  • 1
    IDE with high learning curve
  • 1
    Configuration bolierplate
  • 1
    Conservative community
  • 0
    Have no good and fast fmt

related Clojure posts

Stitch is run entirely on AWS. All of our transactional databases are run with Amazon RDS, and we rely on Amazon S3 for data persistence in various stages of our pipeline. Our product integrates with Amazon Redshift as a data destination, and we also use Redshift as an internal data warehouse (powered by Stitch, of course).

The majority of our services run on stateless Amazon EC2 instances that are managed by AWS OpsWorks. We recently introduced Kubernetes into our infrastructure to run the scheduled jobs that execute Singer code to extract data from various sources. Although we tend to be wary of shiny new toys, Kubernetes has proven to be a good fit for this problem, and its stability, strong community and helpful tooling have made it easy for us to incorporate into our operations.

While we continue to be happy with Clojure for our internal services, we felt that its relatively narrow adoption could impede Singer's growth. We chose Python both because it is well suited to the task, and it seems to have reached critical mass among data engineers. All that being said, the Singer spec is language agnostic, and integrations and libraries have been developed in JavaScript, Go, and Clojure.

See more
Robert Zuber
Shared insights
on
CircleCICircleCIClojureClojureRailsRails
at

Most of CircleCI is written in Clojure and it has been this way since almost the beginning. Early development included Rails, but by the time that CircleCI was released to the public, it was written entirely in Clojure. Clojure is still at our platform’s core. It helps having a common language across much of our stack to allow for our engineers to move between layers of the stack without much overhead.

See more
Java logo

Java

135.6K
3.7K
A concurrent, class-based, object-oriented, language specifically designed to have as few implementation dependencies as possible
135.6K
3.7K
PROS OF JAVA
  • 603
    Great libraries
  • 446
    Widely used
  • 401
    Excellent tooling
  • 396
    Huge amount of documentation available
  • 334
    Large pool of developers available
  • 208
    Open source
  • 203
    Excellent performance
  • 158
    Great development
  • 150
    Used for android
  • 148
    Vast array of 3rd party libraries
  • 60
    Compiled Language
  • 52
    Used for Web
  • 46
    Managed memory
  • 46
    High Performance
  • 45
    Native threads
  • 43
    Statically typed
  • 35
    Easy to read
  • 33
    Great Community
  • 29
    Reliable platform
  • 24
    Sturdy garbage collection
  • 24
    JVM compatibility
  • 22
    Cross Platform Enterprise Integration
  • 20
    Good amount of APIs
  • 20
    Universal platform
  • 18
    Great Support
  • 14
    Great ecosystem
  • 11
    Backward compatible
  • 11
    Lots of boilerplate
  • 10
    Everywhere
  • 9
    Excellent SDK - JDK
  • 7
    Cross-platform
  • 7
    It's Java
  • 7
    Static typing
  • 6
    Portability
  • 6
    Mature language thus stable systems
  • 6
    Better than Ruby
  • 6
    Long term language
  • 5
    Used for Android development
  • 5
    Clojure
  • 5
    Vast Collections Library
  • 4
    Best martial for design
  • 4
    Most developers favorite
  • 4
    Old tech
  • 3
    Testable
  • 3
    History
  • 3
    Javadoc
  • 3
    Stable platform, which many new languages depend on
  • 3
    Great Structure
  • 2
    Faster than python
  • 2
    Type Safe
  • 0
    Job
CONS OF JAVA
  • 33
    Verbosity
  • 27
    NullpointerException
  • 17
    Nightmare to Write
  • 16
    Overcomplexity is praised in community culture
  • 12
    Boiler plate code
  • 8
    Classpath hell prior to Java 9
  • 6
    No REPL
  • 4
    No property
  • 3
    Code are too long
  • 2
    Non-intuitive generic implementation
  • 2
    There is not optional parameter
  • 2
    Floating-point errors
  • 1
    Java's too statically, stronglly, and strictly typed
  • 1
    Returning Wildcard Types
  • 1
    Terrbible compared to Python/Batch Perormence

related Java posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.9M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Kamil Kowalski
Lead Architect at Fresha · | 28 upvotes · 4.1M views

When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.

See more
Golang logo

Golang

22.5K
3.3K
An open source programming language that makes it easy to build simple, reliable, and efficient software
22.5K
3.3K
PROS OF GOLANG
  • 553
    High-performance
  • 397
    Simple, minimal syntax
  • 364
    Fun to write
  • 303
    Easy concurrency support via goroutines
  • 273
    Fast compilation times
  • 195
    Goroutines
  • 181
    Statically linked binaries that are simple to deploy
  • 151
    Simple compile build/run procedures
  • 137
    Backed by google
  • 137
    Great community
  • 53
    Garbage collection built-in
  • 47
    Built-in Testing
  • 44
    Excellent tools - gofmt, godoc etc
  • 40
    Elegant and concise like Python, fast like C
  • 37
    Awesome to Develop
  • 26
    Used for Docker
  • 26
    Flexible interface system
  • 25
    Great concurrency pattern
  • 24
    Deploy as executable
  • 21
    Open-source Integration
  • 19
    Easy to read
  • 17
    Fun to write and so many feature out of the box
  • 17
    Go is God
  • 14
    Powerful and simple
  • 14
    Easy to deploy
  • 14
    Its Simple and Heavy duty
  • 14
    Concurrency
  • 13
    Best language for concurrency
  • 11
    Safe GOTOs
  • 11
    Rich standard library
  • 10
    Clean code, high performance
  • 10
    Easy setup
  • 10
    High performance
  • 9
    Simplicity, Concurrency, Performance
  • 8
    Cross compiling
  • 8
    Single binary avoids library dependency issues
  • 8
    Hassle free deployment
  • 7
    Used by Giants of the industry
  • 7
    Simple, powerful, and great performance
  • 7
    Gofmt
  • 6
    Garbage Collection
  • 5
    WYSIWYG
  • 5
    Very sophisticated syntax
  • 5
    Excellent tooling
  • 4
    Keep it simple and stupid
  • 4
    Widely used
  • 4
    Kubernetes written on Go
  • 2
    No generics
  • 1
    Looks not fancy, but promoting pragmatic idioms
  • 1
    Operator goto
CONS OF GOLANG
  • 42
    You waste time in plumbing code catching errors
  • 25
    Verbose
  • 23
    Packages and their path dependencies are braindead
  • 16
    Google's documentations aren't beginer friendly
  • 15
    Dependency management when working on multiple projects
  • 10
    Automatic garbage collection overheads
  • 8
    Uncommon syntax
  • 7
    Type system is lacking (no generics, etc)
  • 5
    Collection framework is lacking (list, set, map)
  • 3
    Best programming language
  • 1
    A failed experiment to combine c and python

related Golang posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.9M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Nick Parsons
Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 4.3M views

Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

#FrameworksFullStack #Languages

See more
Apache Spark logo

Apache Spark

3K
140
Fast and general engine for large-scale data processing
3K
140
PROS OF APACHE SPARK
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
  • 3
    Works well for most Datascience usecases
  • 2
    Interactive Query
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation
CONS OF APACHE SPARK
  • 4
    Speed

related Apache Spark posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 21 upvotes · 6.1M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Patrick Sun
Software Engineer at Stitch Fix · | 10 upvotes · 64.8K views

As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.

The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.

See more
Haskell logo

Haskell

1.4K
527
An advanced purely-functional programming language
1.4K
527
PROS OF HASKELL
  • 90
    Purely-functional programming
  • 66
    Statically typed
  • 59
    Type-safe
  • 39
    Open source
  • 38
    Great community
  • 31
    Built-in concurrency
  • 30
    Built-in parallelism
  • 30
    Composable
  • 24
    Referentially transparent
  • 20
    Generics
  • 15
    Type inference
  • 15
    Intellectual satisfaction
  • 12
    If it compiles, it's correct
  • 8
    Flexible
  • 8
    Monads
  • 5
    Great type system
  • 4
    Proposition testing with QuickCheck
  • 4
    One of the most powerful languages *(see blub paradox)*
  • 4
    Purely-functional Programming
  • 3
    Highly expressive, type-safe, fast development time
  • 3
    Pattern matching and completeness checking
  • 3
    Great maintainability of the code
  • 3
    Fun
  • 3
    Reliable
  • 2
    Best in class thinking tool
  • 2
    Kind system
  • 2
    Better type-safe than sorry
  • 2
    Type classes
  • 1
    Predictable
  • 1
    Orthogonality
CONS OF HASKELL
  • 9
    Too much distraction in language extensions
  • 8
    Error messages can be very confusing
  • 5
    Libraries have poor documentation
  • 3
    No good ABI
  • 3
    No best practices
  • 2
    Poor packaging for apps written in it for Linux distros
  • 2
    Sometimes performance is unpredictable
  • 1
    Slow compilation
  • 1
    Monads are hard to understand

related Haskell posts

Shared insights
on
HaskellHaskellScalaScala

Why I am using Haskell in my free time?

I have 3 reasons for it. I am looking for:

Fun.

Improve functional programming skill.

Improve problem-solving skill.

Laziness and mathematical abstractions behind Haskell makes it a wonderful language.

It is Pure functional, it helps me to write better Scala code.

Highly expressive language gives elegant ways to solve coding puzzle.

See more
Groovy logo

Groovy

2.1K
212
A multi-faceted language for the Java platform
2.1K
212
PROS OF GROOVY
  • 44
    Java platform
  • 33
    Much more productive than java
  • 29
    Concise and readable
  • 28
    Very little code needed for complex tasks
  • 22
    Dynamic language
  • 13
    Nice dynamic syntax for the jvm
  • 9
    Very fast
  • 7
    Can work with JSON as an object
  • 7
    Easy to setup
  • 6
    Supports closures (lambdas)
  • 6
    Literal Collections
  • 3
    Syntactic sugar
  • 3
    Optional static typing
  • 2
    Developer Friendly
CONS OF GROOVY
  • 3
    Groovy Code can be slower than Java Code
  • 1
    Absurd syntax
  • 1
    Objects cause stateful/heap mess

related Groovy posts

Alex A

Some may wonder why did we choose Grails ? Really good question :) We spent quite some time to evaluate what framework to go with and the battle was between Play Scala and Grails ( Groovy ). We have enough experience with both and, to be honest, I absolutely in love with Scala; however, the tipping point for us was the potential speed of development. Grails allows much faster development pace than Play , and as of right now this is the most important parameter. We might convert later though. Also, worth mentioning, by default Grails comes with Gradle as a build tool, so why change?

See more

Presently, a web-based ERP is developed in Groovy on Grails. Now the ERP is getting revamped with more functionalities. Is it advisable to continue with the same software and framework or try something new especially Node.js over ExpressJS?

See more