What is Scala and what are its top alternatives?
Top Alternatives to Scala
- Kotlin
Kotlin is a statically typed programming language for the JVM, Android and the browser, 100% interoperable with Java ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Clojure
Clojure is designed to be a general-purpose language, combining the approachability and interactive development of a scripting language with an efficient and robust infrastructure for multithreaded programming. Clojure is a compiled language - it compiles directly to JVM bytecode, yet remains completely dynamic. Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and a powerful macro system. ...
- Java
Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere! ...
- Golang
Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language. ...
- Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...
- Haskell
It is a general purpose language that can be used in any domain and use case, it is ideally suited for proprietary business logic and data analysis, fast prototyping and enhancing existing software environments with correct code, performance and scalability. ...
- Groovy
It is a powerful multi-faceted programming language for the JVM platform. It supports a spectrum of programming styles incorporating features from dynamic languages such as optional and duck typing, but also static compilation and static type checking at levels similar to or greater than Java through its extensible static type checker. It aims to greatly increase developer productivity with many powerful features but also a concise, familiar and easy to learn syntax. ...
Scala alternatives & related posts
- Interoperable with Java73
- Functional Programming support55
- Null Safety51
- Official Android support46
- Backed by JetBrains44
- Concise37
- Modern Multiplatform Applications36
- Expressive Syntax28
- Target to JVM27
- Coroutines26
- Open Source24
- Statically Typed19
- Practical elegance19
- Android support17
- Type Inference17
- Readable code14
- Powerful as Scala, simple as Python, plus coroutines <313
- Better Java12
- Pragmatic10
- Lambda9
- Better language for android8
- Expressive DSLs8
- Target to JavaScript8
- Used for Android6
- Less boilerplate code6
- Fast Programming language5
- Less code5
- Native4
- Less boiler plate code4
- Friendly community4
- Functional Programming Language4
- Spring3
- Official Google Support3
- Latest version of Java2
- Well-compromised featured Java alternative1
- Java interop makes users write Java in Kotlin7
- Frequent use of {} keys4
- Hard to make teams adopt the Kotlin style2
- Nonullpointer Exception2
- Friendly community1
- Slow compiler1
- No boiler plate code1
related Kotlin posts
Hi Community! Trust everyone is keeping safe. I am exploring the idea of building a #Neobank (App) with end-to-end banking capabilities. In the process of exploring this space, I have come across multiple Apps (N26, Revolut, Monese, etc) and explored their stacks in detail. The confusion remains to be the Backend Tech to be used?
What would you go with considering all of the languages such as Node.js Java Rails Python are suggested by some person or the other. As a general trend, I have noticed the usage of Node with React on the front or Node with a combination of Kotlin and Swift. Please suggest what would be the right approach!
In our company we have think a lot about languages that we're willing to use, there we have considering Java, Python and C++ . All of there languages are old and well developed at fact but that's not ideology of araclx. We've choose a edge technologies such as Node.js , Rust , Kotlin and Go as our programming languages which is some kind of fun. Node.js is one of biggest trends of 2019, same for Go. We want to grow in our company with growth of languages we have choose, and probably when we would choose Java that would be almost impossible because larger languages move on today's market slower, and cannot have big changes.
Python
- Great libraries1.2K
- Readable code964
- Beautiful code847
- Rapid development788
- Large community691
- Open source438
- Elegant393
- Great community282
- Object oriented273
- Dynamic typing221
- Great standard library77
- Very fast60
- Functional programming55
- Easy to learn51
- Scientific computing46
- Great documentation35
- Productivity29
- Easy to read28
- Matlab alternative28
- Simple is better than complex24
- It's the way I think20
- Imperative19
- Very programmer and non-programmer friendly18
- Free18
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- Import antigravity8
- It's lean and fun to code8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Rapid Prototyping6
- Readability counts6
- Now is better than never6
- Great for tooling6
- Flat is better than nested6
- Although practicality beats purity6
- I love snakes6
- High Documented language6
- There should be one-- and preferably only one --obvious6
- Fast coding and good for competitions6
- Web scraping5
- Lists, tuples, dictionaries5
- Great for analytics5
- Easy to setup and run smooth4
- Easy to learn and use4
- Plotting4
- Beautiful is better than ugly4
- Multiple Inheritence4
- Socially engaged community4
- Complex is better than complicated4
- CG industry needs4
- Simple and easy to learn4
- It is Very easy , simple and will you be love programmi3
- Flexible and easy3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- List comprehensions3
- No cruft3
- Generators3
- Import this3
- Powerful language for AI3
- Can understand easily who are new to programming2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Batteries included2
- Good for hacking2
- Securit2
- Procedural programming1
- Best friend for NLP1
- Slow1
- Automation friendly1
- Sexy af1
- Ni0
- Keep it simple0
- Powerful0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- It is a lisp117
- Persistent data structures100
- Concise syntax100
- jvm-based language90
- Concurrency89
- Interactive repl81
- Code is data76
- Open source61
- Lazy data structures61
- Macros57
- Functional49
- Simplistic23
- Immutable by default22
- Excellent collections20
- Fast-growing community19
- Multiple host languages15
- Simple (not easy!)15
- Practical Lisp15
- Because it's really fun to use10
- Addictive10
- Community9
- Web friendly9
- Rapid development9
- It creates Reusable code9
- Minimalist8
- Programmable programming language6
- Java interop6
- Regained interest in programming5
- Compiles to JavaScript4
- Share a lot of code with clojurescript/use on frontend3
- EDN3
- Clojurescript1
- Cryptic stacktraces11
- Need to wrap basically every java lib5
- Toxic community4
- Good code heavily relies on local conventions3
- Tonns of abandonware3
- Slow application startup3
- Usable only with REPL1
- Hiring issues1
- It's a lisp1
- Bad documented libs1
- Macros are overused by devs1
- Tricky profiling1
- IDE with high learning curve1
- Configuration bolierplate1
- Conservative community1
- Have no good and fast fmt0
related Clojure posts
Stitch is run entirely on AWS. All of our transactional databases are run with Amazon RDS, and we rely on Amazon S3 for data persistence in various stages of our pipeline. Our product integrates with Amazon Redshift as a data destination, and we also use Redshift as an internal data warehouse (powered by Stitch, of course).
The majority of our services run on stateless Amazon EC2 instances that are managed by AWS OpsWorks. We recently introduced Kubernetes into our infrastructure to run the scheduled jobs that execute Singer code to extract data from various sources. Although we tend to be wary of shiny new toys, Kubernetes has proven to be a good fit for this problem, and its stability, strong community and helpful tooling have made it easy for us to incorporate into our operations.
While we continue to be happy with Clojure for our internal services, we felt that its relatively narrow adoption could impede Singer's growth. We chose Python both because it is well suited to the task, and it seems to have reached critical mass among data engineers. All that being said, the Singer spec is language agnostic, and integrations and libraries have been developed in JavaScript, Go, and Clojure.
Most of CircleCI is written in Clojure and it has been this way since almost the beginning. Early development included Rails, but by the time that CircleCI was released to the public, it was written entirely in Clojure. Clojure is still at our platform’s core. It helps having a common language across much of our stack to allow for our engineers to move between layers of the stack without much overhead.
Java
- Great libraries603
- Widely used446
- Excellent tooling401
- Huge amount of documentation available396
- Large pool of developers available334
- Open source208
- Excellent performance203
- Great development158
- Used for android150
- Vast array of 3rd party libraries148
- Compiled Language60
- Used for Web52
- Managed memory46
- High Performance46
- Native threads45
- Statically typed43
- Easy to read35
- Great Community33
- Reliable platform29
- Sturdy garbage collection24
- JVM compatibility24
- Cross Platform Enterprise Integration22
- Good amount of APIs20
- Universal platform20
- Great Support18
- Great ecosystem14
- Backward compatible11
- Lots of boilerplate11
- Everywhere10
- Excellent SDK - JDK9
- Cross-platform7
- It's Java7
- Static typing7
- Portability6
- Mature language thus stable systems6
- Better than Ruby6
- Long term language6
- Used for Android development5
- Clojure5
- Vast Collections Library5
- Best martial for design4
- Most developers favorite4
- Old tech4
- Testable3
- History3
- Javadoc3
- Stable platform, which many new languages depend on3
- Great Structure3
- Faster than python2
- Type Safe2
- Job0
- Verbosity33
- NullpointerException27
- Nightmare to Write17
- Overcomplexity is praised in community culture16
- Boiler plate code12
- Classpath hell prior to Java 98
- No REPL6
- No property4
- Code are too long3
- Non-intuitive generic implementation2
- There is not optional parameter2
- Floating-point errors2
- Java's too statically, stronglly, and strictly typed1
- Returning Wildcard Types1
- Terrbible compared to Python/Batch Perormence1
related Java posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
When you think about test automation, it’s crucial to make it everyone’s responsibility (not just QA Engineers'). We started with Selenium and Java, but with our platform revolving around Ruby, Elixir and JavaScript, QA Engineers were left alone to automate tests. Cypress was the answer, as we could switch to JS and simply involve more people from day one. There's a downside too, as it meant testing on Chrome only, but that was "good enough" for us + if really needed we can always cover some specific cases in a different way.
Golang
- High-performance553
- Simple, minimal syntax397
- Fun to write364
- Easy concurrency support via goroutines303
- Fast compilation times273
- Goroutines195
- Statically linked binaries that are simple to deploy181
- Simple compile build/run procedures151
- Backed by google137
- Great community137
- Garbage collection built-in53
- Built-in Testing47
- Excellent tools - gofmt, godoc etc44
- Elegant and concise like Python, fast like C40
- Awesome to Develop37
- Used for Docker26
- Flexible interface system26
- Great concurrency pattern25
- Deploy as executable24
- Open-source Integration21
- Easy to read19
- Fun to write and so many feature out of the box17
- Go is God17
- Powerful and simple14
- Easy to deploy14
- Its Simple and Heavy duty14
- Concurrency14
- Best language for concurrency13
- Safe GOTOs11
- Rich standard library11
- Clean code, high performance10
- Easy setup10
- High performance10
- Simplicity, Concurrency, Performance9
- Cross compiling8
- Single binary avoids library dependency issues8
- Hassle free deployment8
- Used by Giants of the industry7
- Simple, powerful, and great performance7
- Gofmt7
- Garbage Collection6
- WYSIWYG5
- Very sophisticated syntax5
- Excellent tooling5
- Keep it simple and stupid4
- Widely used4
- Kubernetes written on Go4
- No generics2
- Looks not fancy, but promoting pragmatic idioms1
- Operator goto1
- You waste time in plumbing code catching errors42
- Verbose25
- Packages and their path dependencies are braindead23
- Google's documentations aren't beginer friendly16
- Dependency management when working on multiple projects15
- Automatic garbage collection overheads10
- Uncommon syntax8
- Type system is lacking (no generics, etc)7
- Collection framework is lacking (list, set, map)5
- Best programming language3
- A failed experiment to combine c and python1
related Golang posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
- Open-source61
- Fast and Flexible48
- One platform for every big data problem8
- Great for distributed SQL like applications8
- Easy to install and to use6
- Works well for most Datascience usecases3
- Interactive Query2
- Machine learning libratimery, Streaming in real2
- In memory Computation2
- Speed4
related Apache Spark posts
The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.
Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).
At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.
For more info:
- Our Algorithms Tour: https://algorithms-tour.stitchfix.com/
- Our blog: https://multithreaded.stitchfix.com/blog/
- Careers: https://multithreaded.stitchfix.com/careers/
#DataScience #DataStack #Data
As a frontend engineer on the Algorithms & Analytics team at Stitch Fix, I work with data scientists to develop applications and visualizations to help our internal business partners make data-driven decisions. I envisioned a platform that would assist data scientists in the data exploration process, allowing them to visually explore and rapidly iterate through their assumptions, then share their insights with others. This would align with our team's philosophy of having engineers "deploy platforms, services, abstractions, and frameworks that allow the data scientists to conceive of, develop, and deploy their ideas with autonomy", and solve the pain of data exploration.
The final product, code-named Dora, is built with React, Redux.js and Victory, backed by Elasticsearch to enable fast and iterative data exploration, and uses Apache Spark to move data from our Amazon S3 data warehouse into the Elasticsearch cluster.
- Purely-functional programming90
- Statically typed66
- Type-safe59
- Open source39
- Great community38
- Built-in concurrency31
- Built-in parallelism30
- Composable30
- Referentially transparent24
- Generics20
- Type inference15
- Intellectual satisfaction15
- If it compiles, it's correct12
- Flexible8
- Monads8
- Great type system5
- Proposition testing with QuickCheck4
- One of the most powerful languages *(see blub paradox)*4
- Purely-functional Programming4
- Highly expressive, type-safe, fast development time3
- Pattern matching and completeness checking3
- Great maintainability of the code3
- Fun3
- Reliable3
- Best in class thinking tool2
- Kind system2
- Better type-safe than sorry2
- Type classes2
- Predictable1
- Orthogonality1
- Too much distraction in language extensions9
- Error messages can be very confusing8
- Libraries have poor documentation5
- No good ABI3
- No best practices3
- Poor packaging for apps written in it for Linux distros2
- Sometimes performance is unpredictable2
- Slow compilation1
- Monads are hard to understand1
related Haskell posts
Why I am using Haskell in my free time?
I have 3 reasons for it. I am looking for:
Fun.
Improve functional programming skill.
Improve problem-solving skill.
Laziness and mathematical abstractions behind Haskell makes it a wonderful language.
It is Pure functional, it helps me to write better Scala code.
Highly expressive language gives elegant ways to solve coding puzzle.
- Java platform44
- Much more productive than java33
- Concise and readable29
- Very little code needed for complex tasks28
- Dynamic language22
- Nice dynamic syntax for the jvm13
- Very fast9
- Can work with JSON as an object7
- Easy to setup7
- Supports closures (lambdas)6
- Literal Collections6
- Syntactic sugar3
- Optional static typing3
- Developer Friendly2
- Groovy Code can be slower than Java Code3
- Absurd syntax1
- Objects cause stateful/heap mess1
related Groovy posts
Some may wonder why did we choose Grails ? Really good question :) We spent quite some time to evaluate what framework to go with and the battle was between Play Scala and Grails ( Groovy ). We have enough experience with both and, to be honest, I absolutely in love with Scala; however, the tipping point for us was the potential speed of development. Grails allows much faster development pace than Play , and as of right now this is the most important parameter. We might convert later though. Also, worth mentioning, by default Grails comes with Gradle as a build tool, so why change?
Presently, a web-based ERP is developed in Groovy on Grails. Now the ERP is getting revamped with more functionalities. Is it advisable to continue with the same software and framework or try something new especially Node.js over ExpressJS?