Amazon EC2 logo

Amazon EC2

Scalable, pay-as-you-go compute capacity in the cloud
15.9K
9.5K
+ 1
2.5K

What is Amazon EC2?

It is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers.
Amazon EC2 is a tool in the Cloud Hosting category of a tech stack.

Who uses Amazon EC2?

Companies
5656 companies reportedly use Amazon EC2 in their tech stacks, including Airbnb, Uber, and Netflix.

Developers
9705 developers on StackShare have stated that they use Amazon EC2.

Amazon EC2 Integrations

New Relic, Ansible, Vagrant, CircleCI, and Amazon EC2 Container Service are some of the popular tools that integrate with Amazon EC2. Here's a list of all 103 tools that integrate with Amazon EC2.

Why developers like Amazon EC2?

Here’s a list of reasons why companies and developers use Amazon EC2
Amazon EC2 Reviews

Here are some stack decisions, common use cases and reviews by companies and developers who chose Amazon EC2 in their tech stack.

Dmitry Mukhin
Dmitry Mukhin
at Uploadcare · | 20 upvotes · 66.4K views
atUploadcareUploadcare
Tornado
Tornado
Python
Python
Amazon EC2
Amazon EC2
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)

The 350M API requests we handle daily include many processing tasks such as image enhancements, resizing, filtering, face recognition, and GIF to video conversions.

Tornado is the one we currently use and aiohttp is the one we intend to implement in production in the near future. Both tools support handling huge amounts of requests but aiohttp is preferable as it uses asyncio which is Python-native. Since Python is in the heart of our service, we initially used PIL followed by Pillow. We kind of still do. When we figured resizing was the most taxing processing operation, Alex, our engineer, created the fork named Pillow-SIMD and implemented a good number of optimizations into it to make it 15 times faster than ImageMagick

Thanks to the optimizations, Uploadcare now needs six times fewer servers to process images. Here, by servers I also mean separate Amazon EC2 instances handling processing and the first layer of caching. The processing instances are also paired with AWS Elastic Load Balancing (ELB) which helps ingest files to the CDN.

See more
John-Daniel Trask
John-Daniel Trask
Co-founder & CEO at Raygun · | 19 upvotes · 82.4K views
atRaygunRaygun
Amazon S3
Amazon S3
Amazon RDS
Amazon RDS
nginx
nginx
Amazon EC2
Amazon EC2
AWS Elastic Load Balancing (ELB)
AWS Elastic Load Balancing (ELB)
#CloudHosting
#WebServers
#CloudStorage
#LoadBalancerReverseProxy

We chose AWS because, at the time, it was really the only cloud provider to choose from.

We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.

We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).

While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.

#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy

See more
Ashish Singh
Ashish Singh
Tech Lead, Big Data Platform at Pinterest · | 19 upvotes · 30K views
Apache Hive
Apache Hive
Kubernetes
Kubernetes
Kafka
Kafka
Amazon S3
Amazon S3
Amazon EC2
Amazon EC2
Presto
Presto
#DataScience
#DataEngineering
#AWS
#BigData

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

See more
Tymoteusz Paul
Tymoteusz Paul
Devops guy at X20X Development LTD · | 15 upvotes · 366.2K views
Vagrant
Vagrant
VirtualBox
VirtualBox
Ansible
Ansible
Elasticsearch
Elasticsearch
Kibana
Kibana
Logstash
Logstash
TeamCity
TeamCity
Jenkins
Jenkins
Slack
Slack
Apache Maven
Apache Maven
Vault
Vault
Git
Git
Docker
Docker
CircleCI
CircleCI
LXC
LXC
Amazon EC2
Amazon EC2

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Docker
Docker
Docker Compose
Docker Compose
Jenkins
Jenkins
Kubernetes
Kubernetes
Amazon EC2
Amazon EC2
Heroku
Heroku
FeathersJS
FeathersJS
Node.js
Node.js
ExpressJS
ExpressJS
PostgreSQL
PostgreSQL
React
React
Redux
Redux
Semantic UI React
Semantic UI React
AVA
AVA
ESLint
ESLint
nginx
nginx
GitHub
GitHub
#Containerized
#Containers
#Backend
#Stack
#Frontend

Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

See more
John Kodumal
John Kodumal
CTO at LaunchDarkly · | 15 upvotes · 184.5K views
atLaunchDarklyLaunchDarkly
Amazon RDS
Amazon RDS
PostgreSQL
PostgreSQL
TimescaleDB
TimescaleDB
Patroni
Patroni
Consul
Consul
Amazon ElastiCache
Amazon ElastiCache
Amazon EC2
Amazon EC2
Redis
Redis
Amazon Kinesis
Amazon Kinesis
Kafka
Kafka

As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.

We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.

See more

Amazon EC2's Features

  • Elastic – Amazon EC2 enables you to increase or decrease capacity within minutes, not hours or days. You can commission one, hundreds or even thousands of server instances simultaneously.
  • Completely Controlled – You have complete control of your instances. You have root access to each one, and you can interact with them as you would any machine.
  • Flexible – You have the choice of multiple instance types, operating systems, and software packages. Amazon EC2 allows you to select a configuration of memory, CPU, instance storage, and the boot partition size that is optimal for your choice of operating system and application.
  • Designed for use with other Amazon Web Services – Amazon EC2 works in conjunction with Amazon Simple Storage Service (Amazon S3), Amazon Relational Database Service (Amazon RDS), Amazon SimpleDB and Amazon Simple Queue Service (Amazon SQS) to provide a complete solution for computing, query processing and storage across a wide range of applications.
  • Reliable – Amazon EC2 offers a highly reliable environment where replacement instances can be rapidly and predictably commissioned. The Amazon EC2 Service Level Agreement commitment is 99.95% availability for each Amazon EC2 Region.
  • Secure – Amazon EC2 works in conjunction with Amazon VPC to provide security and robust networking functionality for your compute resources.
  • Inexpensive – Amazon EC2 passes on to you the financial benefits of Amazon’s scale. You pay a very low rate for the compute capacity you actually consume.
  • Easy to Start – Quickly get started with Amazon EC2 by visiting AWS Marketplace to choose preconfigured software on Amazon Machine Images (AMIs). You can quickly deploy this software to EC2 via 1-Click launch or with the EC2 console.

Amazon EC2 Alternatives & Comparisons

What are some alternatives to Amazon EC2?
Amazon LightSail
Everything you need to jumpstart your project on AWS—compute, storage, and networking—for a low, predictable price. Launch a virtual private server with just a few clicks.
Amazon S3
Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web
Amazon EC2 Container Service
Amazon EC2 Container Service lets you launch and stop container-enabled applications with simple API calls, allows you to query the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features like security groups, EBS volumes and IAM roles.
Beanstalk
A single process to commit code, review with the team, and deploy the final result to your customers.
Microsoft Azure
Azure is an open and flexible cloud platform that enables you to quickly build, deploy and manage applications across a global network of Microsoft-managed datacenters. You can build applications using any language, tool or framework. And you can integrate your public cloud applications with your existing IT environment.
See all alternatives

Amazon EC2's Followers
9494 developers follow Amazon EC2 to keep up with related blogs and decisions.
Huy Tran
luc v
Andrico Karoulla
Boris Kurten
farukkhan1999
Kalyan Sarkar
kevinlc123
Rihan Kim
Khang Pham
Shahdat Hossain