StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Languages
  4. Languages
  5. Haskell vs Scala

Haskell vs Scala

OverviewDecisionsComparisonAlternatives

Overview

Scala
Scala
Stacks11.9K
Followers7.8K
Votes1.5K
GitHub Stars14.4K
Forks3.1K
Haskell
Haskell
Stacks1.4K
Followers1.2K
Votes527

Haskell vs Scala: What are the differences?

  1. Type System: Haskell is a statically typed language with type inference, meaning types are checked at compile time and most type annotations can be inferred by the compiler. On the other hand, Scala has a more versatile type system with both static and dynamic typing, allowing for a more flexible approach to type checking.
  2. Functional Programming: Haskell is a purely functional programming language, which means functions are first-class citizens and immutable data structures are preferred. Scala, although it supports functional programming, also allows for object-oriented programming, making it a more versatile language for different programming paradigms.
  3. Pattern Matching: Haskell has extensive pattern matching capabilities, which are integral to functional programming. Scala also supports pattern matching but in a more object-oriented style, allowing for a mix of both styles in code.
  4. Concurrency and Parallelism: Scala has built-in support for concurrency using actors and the Akka framework, making it well-suited for parallel and distributed computing. Haskell, on the other hand, relies on pure functions and lazy evaluation to achieve parallelism, with tools like the par and seq combinators for explicit concurrency control.
  5. Native Data Structures: Haskell has its own set of data structures, such as lists, tuples, and algebraic data types, which are optimized for functional programming. Scala, being a more general-purpose language, has a rich standard library that includes commonly used data structures like arrays, sets, and maps, making it more practical for a wider range of applications.
  6. Tooling and Ecosystem: Scala has a larger and more mature ecosystem compared to Haskell, with better tooling support and integration with popular libraries and frameworks like Spark and Play Framework. Haskell, while growing in popularity, still lacks some of the robust tooling and community support that Scala enjoys.

In Summary, Haskell and Scala differ in their type systems, approach to functional programming, pattern matching capabilities, concurrency models, native data structures, and tooling ecosystems.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Scala, Haskell

Timm
Timm

VP Of Engineering at Flexperto GmbH

Nov 10, 2020

Decided

We have a lot of experience in JavaScript, writing our services in NodeJS allows developers to transition to the back end without any friction, without having to learn a new language. There is also the option to write services in TypeScript, which adds an expressive type layer. The semi-shared ecosystem between front and back end is nice as well, though specifically NodeJS libraries sometimes suffer in quality, compared to other major languages.

As for why we didn't pick the other languages, most of it comes down to "personal preference" and historically grown code bases, but let's do some post-hoc deduction:

Go is a practical choice, reasonably easy to learn, but until we find performance issues with our NodeJS stack, there is simply no reason to switch. The benefits of using NodeJS so far outweigh those of picking Go. This might change in the future.

PHP is a language we're still using in big parts of our system, and are still sometimes writing new code in. Modern PHP has fixed some of its issues, and probably has the fastest development cycle time, but it suffers around modelling complex asynchronous tasks, and (on a personal note) lack of support for writing in a functional style.

We don't use Python, Elixir or Ruby, mostly because of personal preference and for historic reasons.

Rust, though I personally love and use it in my projects, would require us to specifically hire for that, as the learning curve is quite steep. Its web ecosystem is OK by now (see https://www.arewewebyet.org/), but in my opinion, it is still no where near that of the other web languages. In other words, we are not willing to pay the price for playing this innovation card.

Haskell, as with Rust, I personally adore, but is simply too esoteric for us. There are problem domains where it shines, ours is not one of them.

682k views682k
Comments
Nicholas
Nicholas

Jan 29, 2021

Decided

I am working in the domain of big data and machine learning. I am helping companies with bringing their machine learning models to the production. In many projects there is a tendency to port Python, PySpark code to Scala and Scala Spark.

This yields to longer time to market and a lot of mistakes due to necessity to understand and re-write the code. Also many libraries/apis that data scientists/machine learning practitioners use are not available in jvm ecosystem.

Simply, refactoring (if necessary) and organising the code of the data scientists by following best practices of software development is less error prone and faster comparing to re-write in Scala.

Pipeline orchestration tools such as Luigi/Airflow is python native and fits well to this picture.

I have heard some arguments against Python such as, it is slow, or it is hard to maintain due to its dynamically typed language. However cost/benefit of time consumed porting python code to java/scala alone would be enough as a counter-argument. ML pipelines rarerly contains a lot of code (if that is not the case, such as complex domain and significant amount of code, then scala would be a better fit).

In terms of performance, I did not see any issues with Python. It is not the fastest runtime around but ML applications are rarely time-critical (majority of them is batch based).

I still prefer Scala for developing APIs and for applications where the domain contains complex logic.

198k views198k
Comments
Frank
Frank

CTO at Visionary AG

Aug 25, 2022

Decided

We're moving from Java to Kotlin with our Microservice Stack (Spring Boot) because it is excellently supported by framework and tools and the learning curve is not very steep Kotlin is way more straightforward and convenient to use while providing less boilerplate and more strictness, which finally leads to better code, which is more readable, maintainable and less error-prone. We especially like Kotlin's (functional) data structures, which are, e.g. compared to Scala, easier to understand and don't require deep knowledge in functional programming.

48.8k views48.8k
Comments

Detailed Comparison

Scala
Scala
Haskell
Haskell

Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them.

It is a general purpose language that can be used in any domain and use case, it is ideally suited for proprietary business logic and data analysis, fast prototyping and enhancing existing software environments with correct code, performance and scalability.

-
Statically typed; Purely functional; Type inference; Concurrent
Statistics
GitHub Stars
14.4K
GitHub Stars
-
GitHub Forks
3.1K
GitHub Forks
-
Stacks
11.9K
Stacks
1.4K
Followers
7.8K
Followers
1.2K
Votes
1.5K
Votes
527
Pros & Cons
Pros
  • 188
    Static typing
  • 178
    Pattern-matching
  • 175
    Jvm
  • 172
    Scala is fun
  • 138
    Types
Cons
  • 11
    Slow compilation time
  • 7
    Multiple ropes and styles to hang your self
  • 6
    Too few developers available
  • 4
    Complicated subtyping
  • 2
    My coworkers using scala are racist against other stuff
Pros
  • 90
    Purely-functional programming
  • 66
    Statically typed
  • 59
    Type-safe
  • 39
    Open source
  • 38
    Great community
Cons
  • 9
    Too much distraction in language extensions
  • 8
    Error messages can be very confusing
  • 5
    Libraries have poor documentation
  • 3
    No good ABI
  • 3
    No best practices
Integrations
Java
Java
No integrations available

What are some alternatives to Scala, Haskell?

JavaScript

JavaScript

JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles.

Python

Python

Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best.

PHP

PHP

Fast, flexible and pragmatic, PHP powers everything from your blog to the most popular websites in the world.

Ruby

Ruby

Ruby is a language of careful balance. Its creator, Yukihiro “Matz” Matsumoto, blended parts of his favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced functional programming with imperative programming.

Java

Java

Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere!

Golang

Golang

Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language.

HTML5

HTML5

HTML5 is a core technology markup language of the Internet used for structuring and presenting content for the World Wide Web. As of October 2014 this is the final and complete fifth revision of the HTML standard of the World Wide Web Consortium (W3C). The previous version, HTML 4, was standardised in 1997.

C#

C#

C# (pronounced "See Sharp") is a simple, modern, object-oriented, and type-safe programming language. C# has its roots in the C family of languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Elixir

Elixir

Elixir leverages the Erlang VM, known for running low-latency, distributed and fault-tolerant systems, while also being successfully used in web development and the embedded software domain.

Swift

Swift

Writing code is interactive and fun, the syntax is concise yet expressive, and apps run lightning-fast. Swift is ready for your next iOS and OS X project — or for addition into your current app — because Swift code works side-by-side with Objective-C.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase