What is SpaCy and what are its top alternatives?
Top Alternatives to SpaCy
- NLTK
It is a suite of libraries and programs for symbolic and statistical natural language processing for English written in the Python programming language. ...
- Gensim
It is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. ...
- Amazon Comprehend
Amazon Comprehend is a natural language processing (NLP) service that uses machine learning to discover insights from text. Amazon Comprehend provides Keyphrase Extraction, Sentiment Analysis, Entity Recognition, Topic Modeling, and Language Detection APIs so you can easily integrate natural language processing into your applications. ...
- TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...
- Flair
Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), sense disambiguation and classification. ...
- Stanza
It is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. ...
- FastText
It is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. ...
- Transformers
It provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch. ...
SpaCy alternatives & related posts
NLTK
related NLTK posts
related Gensim posts
Can you please advise which one to choose FastText Or Gensim, in terms of:
- Operability with ML Ops tools such as MLflow, Kubeflow, etc.
- Performance
- Customization of Intermediate steps
- FastText and Gensim both have the same underlying libraries
- Use cases each one tries to solve
- Unsupervised Vs Supervised dimensions
- Ease of Use.
Please mention any other points that I may have missed here.
- Multi-lingual2
related Amazon Comprehend posts
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
- Hard9
- Hard to debug6
- Documentation not very helpful2
related TensorFlow posts
Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:
At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.
TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.
Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:
(Direct GitHub repo: https://github.com/uber/horovod)
In mid-2015, Uber began exploring ways to scale ML across the organization, avoiding ML anti-patterns while standardizing workflows and tools. This effort led to Michelangelo.
Michelangelo consists of a mix of open source systems and components built in-house. The primary open sourced components used are HDFS, Spark, Samza, Cassandra, MLLib, XGBoost, and TensorFlow.
!
related Flair posts
related Stanza posts
- Simple1
- No step by step API support1
- No in-built performance plotting facility or to get it1
- No step by step API access1
related FastText posts
Can you please advise which one to choose FastText Or Gensim, in terms of:
- Operability with ML Ops tools such as MLflow, Kubeflow, etc.
- Performance
- Customization of Intermediate steps
- FastText and Gensim both have the same underlying libraries
- Use cases each one tries to solve
- Unsupervised Vs Supervised dimensions
- Ease of Use.
Please mention any other points that I may have missed here.