Alternatives to Algolia logo

Alternatives to Algolia

Elasticsearch, Solr, Swiftype, Azure Search, and Klevu are the most popular alternatives and competitors to Algolia.
1.3K
1.1K
+ 1
697

What is Algolia and what are its top alternatives?

Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.
Algolia is a tool in the Search as a Service category of a tech stack.
Algolia is an open source tool with GitHub stars and GitHub forks. Here’s a link to Algolia's open source repository on GitHub

Top Alternatives to Algolia

  • Elasticsearch
    Elasticsearch

    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...

  • Solr
    Solr

    Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, near real-time indexing, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites. ...

  • Swiftype
    Swiftype

    Swiftype is the easiest way to add great search to your website or mobile application. ...

  • Azure Search
    Azure Search

    Azure Search makes it easy to add powerful and sophisticated search capabilities to your website or application. Quickly and easily tune search results and construct rich, fine-tuned ranking models to tie search results to business goals. Reliable throughput and storage provide fast search indexing and querying to support time-sensitive search scenarios. ...

  • Klevu
    Klevu

    It is an intelligent site search solution designed to help eCommerce businesses increase onsite sales and improve the customer online shopping experience. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

Algolia alternatives & related posts

Elasticsearch logo

Elasticsearch

34.3K
26.7K
1.6K
Open Source, Distributed, RESTful Search Engine
34.3K
26.7K
+ 1
1.6K
PROS OF ELASTICSEARCH
  • 328
    Powerful api
  • 315
    Great search engine
  • 231
    Open source
  • 214
    Restful
  • 200
    Near real-time search
  • 98
    Free
  • 85
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 4
    Great docs
  • 4
    Awesome, great tool
  • 3
    Highly Available
  • 3
    Easy to scale
  • 2
    Potato
  • 2
    Document Store
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Reliable
  • 2
    Fast
  • 2
    Easy setup
  • 1
    Open
  • 1
    Easy to get hot data
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Not stable
  • 1
    Scalability
  • 0
    Community
CONS OF ELASTICSEARCH
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale

related Elasticsearch posts

Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8.9M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Solr logo

Solr

776
642
126
A blazing-fast, open source enterprise search platform
776
642
+ 1
126
PROS OF SOLR
  • 35
    Powerful
  • 22
    Indexing and searching
  • 20
    Scalable
  • 19
    Customizable
  • 13
    Enterprise Ready
  • 5
    Restful
  • 5
    Apache Software Foundation
  • 4
    Great Search engine
  • 2
    Security built-in
  • 1
    Easy Operating
CONS OF SOLR
    Be the first to leave a con

    related Solr posts

    Ganesa Vijayakumar
    Full Stack Coder | Technical Lead · | 19 upvotes · 4.9M views

    I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

    I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

    As per my work experience and knowledge, I have chosen the followings stacks to this mission.

    UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

    Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

    Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

    Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

    Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

    Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

    Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

    Happy Coding! Suggestions are welcome! :)

    Thanks, Ganesa

    See more
    Shared insights
    on
    SolrSolrPHPPHPJavaJavaMySQLMySQL
    at

    One of the earliest public references to Slack’s stack comes from a Twitter conversation. The Slack account states that “the messaging server is java, the app is php, db is mysql and solr for search,” and that uploaded files are “Stored on S3, but private files require authentication so requests go through the app.”

    See more
    Swiftype logo

    Swiftype

    192
    96
    11
    Powerful and scalable search for any application or website
    192
    96
    + 1
    11
    PROS OF SWIFTYPE
    • 8
      Very easy setup and highly customizable for your search
    • 1
      Easy setup
    • 1
      Analytics
    • 1
      Role devision to develop, design, manage
    CONS OF SWIFTYPE
    • 1
      Expensive
    • 1
      API Calls Monitoring/Alerts
    • 1
      Cost Prediction
    • 1
      Customer Support

    related Swiftype posts

    Azure Search logo

    Azure Search

    78
    222
    16
    Search-as-a-service for web and mobile app development
    78
    222
    + 1
    16
    PROS OF AZURE SEARCH
    • 4
      Easy to set up
    • 3
      Auto-Scaling
    • 3
      Managed
    • 2
      Easy Setup
    • 2
      More languages
    • 2
      Lucene based search criteria
    CONS OF AZURE SEARCH
      Be the first to leave a con

      related Azure Search posts

      Klevu logo

      Klevu

      2
      15
      0
      The instant site search solution for eCommerce stores
      2
      15
      + 1
      0
      PROS OF KLEVU
        Be the first to leave a pro
        CONS OF KLEVU
          Be the first to leave a con

          related Klevu posts

          JavaScript logo

          JavaScript

          354.6K
          269.6K
          8.1K
          Lightweight, interpreted, object-oriented language with first-class functions
          354.6K
          269.6K
          + 1
          8.1K
          PROS OF JAVASCRIPT
          • 1.7K
            Can be used on frontend/backend
          • 1.5K
            It's everywhere
          • 1.2K
            Lots of great frameworks
          • 897
            Fast
          • 745
            Light weight
          • 425
            Flexible
          • 392
            You can't get a device today that doesn't run js
          • 286
            Non-blocking i/o
          • 237
            Ubiquitousness
          • 191
            Expressive
          • 55
            Extended functionality to web pages
          • 49
            Relatively easy language
          • 46
            Executed on the client side
          • 30
            Relatively fast to the end user
          • 25
            Pure Javascript
          • 21
            Functional programming
          • 15
            Async
          • 13
            Full-stack
          • 12
            Setup is easy
          • 12
            Future Language of The Web
          • 12
            Its everywhere
          • 11
            Because I love functions
          • 11
            JavaScript is the New PHP
          • 10
            Like it or not, JS is part of the web standard
          • 9
            Expansive community
          • 9
            Everyone use it
          • 9
            Can be used in backend, frontend and DB
          • 9
            Easy
          • 8
            Most Popular Language in the World
          • 8
            Powerful
          • 8
            Can be used both as frontend and backend as well
          • 8
            For the good parts
          • 8
            No need to use PHP
          • 8
            Easy to hire developers
          • 7
            Agile, packages simple to use
          • 7
            Love-hate relationship
          • 7
            Photoshop has 3 JS runtimes built in
          • 7
            Evolution of C
          • 7
            It's fun
          • 7
            Hard not to use
          • 7
            Versitile
          • 7
            Its fun and fast
          • 7
            Nice
          • 7
            Popularized Class-Less Architecture & Lambdas
          • 7
            Supports lambdas and closures
          • 6
            It let's me use Babel & Typescript
          • 6
            Can be used on frontend/backend/Mobile/create PRO Ui
          • 6
            1.6K Can be used on frontend/backend
          • 6
            Client side JS uses the visitors CPU to save Server Res
          • 6
            Easy to make something
          • 5
            Clojurescript
          • 5
            Promise relationship
          • 5
            Stockholm Syndrome
          • 5
            Function expressions are useful for callbacks
          • 5
            Scope manipulation
          • 5
            Everywhere
          • 5
            Client processing
          • 5
            What to add
          • 4
            Because it is so simple and lightweight
          • 4
            Only Programming language on browser
          • 1
            Test
          • 1
            Hard to learn
          • 1
            Test2
          • 1
            Not the best
          • 1
            Easy to understand
          • 1
            Subskill #4
          • 1
            Easy to learn
          • 0
            Hard 彤
          CONS OF JAVASCRIPT
          • 22
            A constant moving target, too much churn
          • 20
            Horribly inconsistent
          • 15
            Javascript is the New PHP
          • 9
            No ability to monitor memory utilitization
          • 8
            Shows Zero output in case of ANY error
          • 7
            Thinks strange results are better than errors
          • 6
            Can be ugly
          • 3
            No GitHub
          • 2
            Slow
          • 0
            HORRIBLE DOCUMENTS, faulty code, repo has bugs

          related JavaScript posts

          Zach Holman

          Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

          But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

          But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

          Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

          See more
          Conor Myhrvold
          Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 11.2M views

          How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

          Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

          Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

          https://eng.uber.com/distributed-tracing/

          (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

          Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

          See more
          Git logo

          Git

          293.7K
          175.8K
          6.6K
          Fast, scalable, distributed revision control system
          293.7K
          175.8K
          + 1
          6.6K
          PROS OF GIT
          • 1.4K
            Distributed version control system
          • 1.1K
            Efficient branching and merging
          • 959
            Fast
          • 845
            Open source
          • 726
            Better than svn
          • 368
            Great command-line application
          • 306
            Simple
          • 291
            Free
          • 232
            Easy to use
          • 222
            Does not require server
          • 27
            Distributed
          • 22
            Small & Fast
          • 18
            Feature based workflow
          • 15
            Staging Area
          • 13
            Most wide-spread VSC
          • 11
            Role-based codelines
          • 11
            Disposable Experimentation
          • 7
            Frictionless Context Switching
          • 6
            Data Assurance
          • 5
            Efficient
          • 4
            Just awesome
          • 3
            Github integration
          • 3
            Easy branching and merging
          • 2
            Compatible
          • 2
            Flexible
          • 2
            Possible to lose history and commits
          • 1
            Rebase supported natively; reflog; access to plumbing
          • 1
            Light
          • 1
            Team Integration
          • 1
            Fast, scalable, distributed revision control system
          • 1
            Easy
          • 1
            Flexible, easy, Safe, and fast
          • 1
            CLI is great, but the GUI tools are awesome
          • 1
            It's what you do
          • 0
            Phinx
          CONS OF GIT
          • 16
            Hard to learn
          • 11
            Inconsistent command line interface
          • 9
            Easy to lose uncommitted work
          • 7
            Worst documentation ever possibly made
          • 5
            Awful merge handling
          • 3
            Unexistent preventive security flows
          • 3
            Rebase hell
          • 2
            When --force is disabled, cannot rebase
          • 2
            Ironically even die-hard supporters screw up badly
          • 1
            Doesn't scale for big data

          related Git posts

          Simon Reymann
          Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10M views

          Our whole DevOps stack consists of the following tools:

          • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
          • Respectively Git as revision control system
          • SourceTree as Git GUI
          • Visual Studio Code as IDE
          • CircleCI for continuous integration (automatize development process)
          • Prettier / TSLint / ESLint as code linter
          • SonarQube as quality gate
          • Docker as container management (incl. Docker Compose for multi-container application management)
          • VirtualBox for operating system simulation tests
          • Kubernetes as cluster management for docker containers
          • Heroku for deploying in test environments
          • nginx as web server (preferably used as facade server in production environment)
          • SSLMate (using OpenSSL) for certificate management
          • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
          • PostgreSQL as preferred database system
          • Redis as preferred in-memory database/store (great for caching)

          The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

          • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
          • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
          • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
          • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
          • Scalability: All-in-one framework for distributed systems.
          • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
          See more
          Tymoteusz Paul
          Devops guy at X20X Development LTD · | 23 upvotes · 8.9M views

          Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

          It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

          I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

          We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

          If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

          The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

          Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

          See more
          GitHub logo

          GitHub

          281.7K
          246K
          10.3K
          Powerful collaboration, review, and code management for open source and private development projects
          281.7K
          246K
          + 1
          10.3K
          PROS OF GITHUB
          • 1.8K
            Open source friendly
          • 1.5K
            Easy source control
          • 1.3K
            Nice UI
          • 1.1K
            Great for team collaboration
          • 867
            Easy setup
          • 504
            Issue tracker
          • 486
            Great community
          • 483
            Remote team collaboration
          • 451
            Great way to share
          • 442
            Pull request and features planning
          • 147
            Just works
          • 132
            Integrated in many tools
          • 121
            Free Public Repos
          • 116
            Github Gists
          • 112
            Github pages
          • 83
            Easy to find repos
          • 62
            Open source
          • 60
            It's free
          • 60
            Easy to find projects
          • 56
            Network effect
          • 49
            Extensive API
          • 43
            Organizations
          • 42
            Branching
          • 34
            Developer Profiles
          • 32
            Git Powered Wikis
          • 30
            Great for collaboration
          • 24
            It's fun
          • 23
            Clean interface and good integrations
          • 22
            Community SDK involvement
          • 20
            Learn from others source code
          • 16
            Because: Git
          • 14
            It integrates directly with Azure
          • 10
            Standard in Open Source collab
          • 10
            Newsfeed
          • 8
            It integrates directly with Hipchat
          • 8
            Fast
          • 8
            Beautiful user experience
          • 7
            Easy to discover new code libraries
          • 6
            Smooth integration
          • 6
            Cloud SCM
          • 6
            Nice API
          • 6
            Graphs
          • 6
            Integrations
          • 6
            It's awesome
          • 5
            Quick Onboarding
          • 5
            Reliable
          • 5
            Remarkable uptime
          • 5
            CI Integration
          • 5
            Hands down best online Git service available
          • 4
            Uses GIT
          • 4
            Version Control
          • 4
            Simple but powerful
          • 4
            Unlimited Public Repos at no cost
          • 4
            Free HTML hosting
          • 4
            Security options
          • 4
            Loved by developers
          • 4
            Easy to use and collaborate with others
          • 3
            Ci
          • 3
            IAM
          • 3
            Nice to use
          • 3
            Easy deployment via SSH
          • 2
            Easy to use
          • 2
            Leads the copycats
          • 2
            All in one development service
          • 2
            Free private repos
          • 2
            Free HTML hostings
          • 2
            Easy and efficient maintainance of the projects
          • 2
            Beautiful
          • 2
            Easy source control and everything is backed up
          • 2
            IAM integration
          • 2
            Very Easy to Use
          • 2
            Good tools support
          • 2
            Issues tracker
          • 2
            Never dethroned
          • 2
            Self Hosted
          • 1
            Dasf
          • 1
            Profound
          CONS OF GITHUB
          • 54
            Owned by micrcosoft
          • 38
            Expensive for lone developers that want private repos
          • 15
            Relatively slow product/feature release cadence
          • 10
            API scoping could be better
          • 9
            Only 3 collaborators for private repos
          • 4
            Limited featureset for issue management
          • 3
            Does not have a graph for showing history like git lens
          • 2
            GitHub Packages does not support SNAPSHOT versions
          • 1
            No multilingual interface
          • 1
            Takes a long time to commit
          • 1
            Expensive

          related GitHub posts

          Johnny Bell

          I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

          I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

          I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

          Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

          Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

          With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

          If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

          See more

          Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

          Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

          Check Out My Architecture: CLICK ME

          Check out the GitHub repo attached

          See more