Alternatives to Sphinx logo

Alternatives to Sphinx

Elasticsearch, MkDocs, Jekyll, Centrify, and JavaScript are the most popular alternatives and competitors to Sphinx.
890
299
+ 1
32

What is Sphinx and what are its top alternatives?

It lets you either batch index and search data stored in an SQL database, NoSQL storage, or just files quickly and easily — or index and search data on the fly, working with it pretty much as with a database server.
Sphinx is a tool in the Search Engines category of a tech stack.

Top Alternatives to Sphinx

  • Elasticsearch
    Elasticsearch

    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...

  • MkDocs
    MkDocs

    It builds completely static HTML sites that you can host on GitHub pages, Amazon S3, or anywhere else you choose. There's a stack of good looking themes available. The built-in dev-server allows you to preview your documentation as you're writing it. It will even auto-reload and refresh your browser whenever you save your changes. ...

  • Jekyll
    Jekyll

    Think of Jekyll as a file-based CMS, without all the complexity. Jekyll takes your content, renders Markdown and Liquid templates, and spits out a complete, static website ready to be served by Apache, Nginx or another web server. Jekyll is the engine behind GitHub Pages, which you can use to host sites right from your GitHub repositories. ...

  • Centrify
    Centrify

    It is privileged identity management and identity as a service solutions stop the breach by securing access to hybrid enterprises through the power of identity services. ...

  • JavaScript
    JavaScript

    JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Python
    Python

    Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...

Sphinx alternatives & related posts

Elasticsearch logo

Elasticsearch

34.1K
26.6K
1.6K
Open Source, Distributed, RESTful Search Engine
34.1K
26.6K
+ 1
1.6K
PROS OF ELASTICSEARCH
  • 328
    Powerful api
  • 315
    Great search engine
  • 231
    Open source
  • 214
    Restful
  • 200
    Near real-time search
  • 98
    Free
  • 85
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 4
    Great docs
  • 4
    Awesome, great tool
  • 3
    Highly Available
  • 3
    Easy to scale
  • 2
    Potato
  • 2
    Document Store
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Reliable
  • 2
    Fast
  • 2
    Easy setup
  • 1
    Open
  • 1
    Easy to get hot data
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Not stable
  • 1
    Scalability
  • 0
    Community
CONS OF ELASTICSEARCH
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale

related Elasticsearch posts

Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8.3M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
MkDocs logo

MkDocs

124
149
14
A static site generator
124
149
+ 1
14
PROS OF MKDOCS
  • 5
    Speed
  • 4
    Gitlab integration
  • 3
    Extensibility
  • 2
    Themes
CONS OF MKDOCS
  • 1
    Build time increases exponentially as site grows

related MkDocs posts

Nikolaj Ivancic

I want to build a documentation tool - functionally equivalent to MkDocs. The initial choice ought to be VuePress - but I know of at least one respectable developer who started with VuePress and switched to Nuxt.js. A rich set of "themes" is a plus and all documents ought to be in Markdown.

Any opinions?

See more
Jekyll logo

Jekyll

1.9K
1.4K
230
Blog-aware, static site generator in Ruby
1.9K
1.4K
+ 1
230
PROS OF JEKYLL
  • 74
    Github pages integration
  • 54
    Open source
  • 37
    It's slick, customisable and hackerish
  • 24
    Easy to deploy
  • 23
    Straightforward cms for the hacker mindset
  • 7
    Gitlab pages integration
  • 5
    Best for blogging
  • 2
    Low maintenance
  • 2
    Easy to integrate localization
  • 1
    Huge plugins ecosystem
  • 1
    Authoring freedom and simplicity
CONS OF JEKYLL
  • 4
    Build time increases exponentially as site grows
  • 2
    Lack of developments lately
  • 1
    Og doesn't work with postings dynamically

related Jekyll posts

Dale Ross
Independent Contractor at Self Employed · | 22 upvotes · 1.5M views

I've heard that I have the ability to write well, at times. When it flows, it flows. I decided to start blogging in 2013 on Blogger. I started a company and joined BizPark with the Microsoft Azure allotment. I created a WordPress blog and did a migration at some point. A lot happened in the time after that migration but I stopped coding and changed cities during tumultuous times that taught me many lessons concerning mental health and productivity. I eventually graduated from BizSpark and outgrew the credit allotment. That killed the WordPress blog.

I blogged about writing again on the existing Blogger blog but it didn't feel right. I looked at a few options where I wouldn't have to worry about hosting cost indefinitely and Jekyll stood out with GitHub Pages. The Importer was fairly straightforward for the existing blog posts.

Todo * Set up redirects for all posts on blogger. The URI format is different so a complete redirect wouldn't work. Although, there may be something in Jekyll that could manage the redirects. I did notice the old URLs were stored in the front matter. I'm working on a command-line Ruby gem for the current plan. * I did find some of the lost WordPress posts on archive.org that I downloaded with the waybackmachinedownloader. I think I might write an importer for that. * I still have a few Disqus comment threads to map

See more
Josh Dzielak
Co-Founder & CTO at Orbit · | 5 upvotes · 519.5K views
Shared insights
on
JekyllJekyllHugoHugo

Earlier this year, I migrated my personal website (dzello.com) from Jekyll to Hugo. My goal with the migration was to make the development environment as pleasant as possible and to make it really easy to add new types of content. For example, I knew I wanted to add a consulting page and some portfolio-style pages to show off talks I had given and projects I had worked on.

I had heard about how fast Hugo was, so I tried it out with my content after using a simple migration tool. The results were impressive - the startup and rebuild times were in milliseconds, making the process of iterating on content or design less cumbersome. Then I started to see how I could use Hugo to create new page types and was very impressed by the flexibility of the content model. It took me a few days to really understand where content should go with Hugo, but then I felt very confident that I could create many different types of pages - even multiple blogs if I wanted - using a consistent syntax and with full control of the layouts and the URLs.

After about 6 months, I've been very happy with the results of the migration. The dev environment is light and fast and I feel at ease adding new pages and sections to the site.

See more
Centrify logo

Centrify

13
31
0
Leader in securing enterprise identities against cyberthreats that target today’s hybrid IT environment of cloud, mobile and on-premises
13
31
+ 1
0
PROS OF CENTRIFY
    Be the first to leave a pro
    CONS OF CENTRIFY
      Be the first to leave a con

      related Centrify posts

      JavaScript logo

      JavaScript

      351.3K
      267.5K
      8.1K
      Lightweight, interpreted, object-oriented language with first-class functions
      351.3K
      267.5K
      + 1
      8.1K
      PROS OF JAVASCRIPT
      • 1.7K
        Can be used on frontend/backend
      • 1.5K
        It's everywhere
      • 1.2K
        Lots of great frameworks
      • 897
        Fast
      • 745
        Light weight
      • 425
        Flexible
      • 392
        You can't get a device today that doesn't run js
      • 286
        Non-blocking i/o
      • 237
        Ubiquitousness
      • 191
        Expressive
      • 55
        Extended functionality to web pages
      • 49
        Relatively easy language
      • 46
        Executed on the client side
      • 30
        Relatively fast to the end user
      • 25
        Pure Javascript
      • 21
        Functional programming
      • 15
        Async
      • 13
        Full-stack
      • 12
        Setup is easy
      • 12
        Future Language of The Web
      • 12
        Its everywhere
      • 11
        Because I love functions
      • 11
        JavaScript is the New PHP
      • 10
        Like it or not, JS is part of the web standard
      • 9
        Expansive community
      • 9
        Everyone use it
      • 9
        Can be used in backend, frontend and DB
      • 9
        Easy
      • 8
        Most Popular Language in the World
      • 8
        Powerful
      • 8
        Can be used both as frontend and backend as well
      • 8
        For the good parts
      • 8
        No need to use PHP
      • 8
        Easy to hire developers
      • 7
        Agile, packages simple to use
      • 7
        Love-hate relationship
      • 7
        Photoshop has 3 JS runtimes built in
      • 7
        Evolution of C
      • 7
        It's fun
      • 7
        Hard not to use
      • 7
        Versitile
      • 7
        Its fun and fast
      • 7
        Nice
      • 7
        Popularized Class-Less Architecture & Lambdas
      • 7
        Supports lambdas and closures
      • 6
        It let's me use Babel & Typescript
      • 6
        Can be used on frontend/backend/Mobile/create PRO Ui
      • 6
        1.6K Can be used on frontend/backend
      • 6
        Client side JS uses the visitors CPU to save Server Res
      • 6
        Easy to make something
      • 5
        Clojurescript
      • 5
        Promise relationship
      • 5
        Stockholm Syndrome
      • 5
        Function expressions are useful for callbacks
      • 5
        Scope manipulation
      • 5
        Everywhere
      • 5
        Client processing
      • 5
        What to add
      • 4
        Because it is so simple and lightweight
      • 4
        Only Programming language on browser
      • 1
        Test
      • 1
        Hard to learn
      • 1
        Test2
      • 1
        Not the best
      • 1
        Easy to understand
      • 1
        Subskill #4
      • 1
        Easy to learn
      • 0
        Hard 彤
      CONS OF JAVASCRIPT
      • 22
        A constant moving target, too much churn
      • 20
        Horribly inconsistent
      • 15
        Javascript is the New PHP
      • 9
        No ability to monitor memory utilitization
      • 8
        Shows Zero output in case of ANY error
      • 7
        Thinks strange results are better than errors
      • 6
        Can be ugly
      • 3
        No GitHub
      • 2
        Slow

      related JavaScript posts

      Zach Holman

      Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.

      But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.

      But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.

      Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.

      See more
      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 10.2M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Git logo

      Git

      290.2K
      174.4K
      6.6K
      Fast, scalable, distributed revision control system
      290.2K
      174.4K
      + 1
      6.6K
      PROS OF GIT
      • 1.4K
        Distributed version control system
      • 1.1K
        Efficient branching and merging
      • 959
        Fast
      • 845
        Open source
      • 726
        Better than svn
      • 368
        Great command-line application
      • 306
        Simple
      • 291
        Free
      • 232
        Easy to use
      • 222
        Does not require server
      • 27
        Distributed
      • 22
        Small & Fast
      • 18
        Feature based workflow
      • 15
        Staging Area
      • 13
        Most wide-spread VSC
      • 11
        Role-based codelines
      • 11
        Disposable Experimentation
      • 7
        Frictionless Context Switching
      • 6
        Data Assurance
      • 5
        Efficient
      • 4
        Just awesome
      • 3
        Github integration
      • 3
        Easy branching and merging
      • 2
        Compatible
      • 2
        Flexible
      • 2
        Possible to lose history and commits
      • 1
        Rebase supported natively; reflog; access to plumbing
      • 1
        Light
      • 1
        Team Integration
      • 1
        Fast, scalable, distributed revision control system
      • 1
        Easy
      • 1
        Flexible, easy, Safe, and fast
      • 1
        CLI is great, but the GUI tools are awesome
      • 1
        It's what you do
      • 0
        Phinx
      CONS OF GIT
      • 16
        Hard to learn
      • 11
        Inconsistent command line interface
      • 9
        Easy to lose uncommitted work
      • 7
        Worst documentation ever possibly made
      • 5
        Awful merge handling
      • 3
        Unexistent preventive security flows
      • 3
        Rebase hell
      • 2
        When --force is disabled, cannot rebase
      • 2
        Ironically even die-hard supporters screw up badly
      • 1
        Doesn't scale for big data

      related Git posts

      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 9.3M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Tymoteusz Paul
      Devops guy at X20X Development LTD · | 23 upvotes · 8.3M views

      Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

      It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

      I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

      We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

      If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

      The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

      Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

      See more
      GitHub logo

      GitHub

      279.9K
      244.1K
      10.3K
      Powerful collaboration, review, and code management for open source and private development projects
      279.9K
      244.1K
      + 1
      10.3K
      PROS OF GITHUB
      • 1.8K
        Open source friendly
      • 1.5K
        Easy source control
      • 1.3K
        Nice UI
      • 1.1K
        Great for team collaboration
      • 867
        Easy setup
      • 504
        Issue tracker
      • 486
        Great community
      • 482
        Remote team collaboration
      • 451
        Great way to share
      • 442
        Pull request and features planning
      • 147
        Just works
      • 132
        Integrated in many tools
      • 121
        Free Public Repos
      • 116
        Github Gists
      • 112
        Github pages
      • 83
        Easy to find repos
      • 62
        Open source
      • 60
        It's free
      • 60
        Easy to find projects
      • 56
        Network effect
      • 49
        Extensive API
      • 43
        Organizations
      • 42
        Branching
      • 34
        Developer Profiles
      • 32
        Git Powered Wikis
      • 30
        Great for collaboration
      • 24
        It's fun
      • 23
        Clean interface and good integrations
      • 22
        Community SDK involvement
      • 20
        Learn from others source code
      • 16
        Because: Git
      • 14
        It integrates directly with Azure
      • 10
        Standard in Open Source collab
      • 10
        Newsfeed
      • 8
        It integrates directly with Hipchat
      • 8
        Fast
      • 8
        Beautiful user experience
      • 7
        Easy to discover new code libraries
      • 6
        Smooth integration
      • 6
        Cloud SCM
      • 6
        Nice API
      • 6
        Graphs
      • 6
        Integrations
      • 6
        It's awesome
      • 5
        Quick Onboarding
      • 5
        Reliable
      • 5
        Remarkable uptime
      • 5
        CI Integration
      • 5
        Hands down best online Git service available
      • 4
        Uses GIT
      • 4
        Version Control
      • 4
        Simple but powerful
      • 4
        Unlimited Public Repos at no cost
      • 4
        Free HTML hosting
      • 4
        Security options
      • 4
        Loved by developers
      • 4
        Easy to use and collaborate with others
      • 3
        Ci
      • 3
        IAM
      • 3
        Nice to use
      • 3
        Easy deployment via SSH
      • 2
        Easy to use
      • 2
        Leads the copycats
      • 2
        All in one development service
      • 2
        Free private repos
      • 2
        Free HTML hostings
      • 2
        Easy and efficient maintainance of the projects
      • 2
        Beautiful
      • 2
        Easy source control and everything is backed up
      • 2
        IAM integration
      • 2
        Very Easy to Use
      • 2
        Good tools support
      • 2
        Issues tracker
      • 2
        Never dethroned
      • 2
        Self Hosted
      • 1
        Dasf
      • 1
        Profound
      CONS OF GITHUB
      • 53
        Owned by micrcosoft
      • 37
        Expensive for lone developers that want private repos
      • 15
        Relatively slow product/feature release cadence
      • 10
        API scoping could be better
      • 8
        Only 3 collaborators for private repos
      • 3
        Limited featureset for issue management
      • 2
        GitHub Packages does not support SNAPSHOT versions
      • 2
        Does not have a graph for showing history like git lens
      • 1
        No multilingual interface
      • 1
        Takes a long time to commit
      • 1
        Expensive

      related GitHub posts

      Johnny Bell

      I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

      I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

      I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

      Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

      Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

      With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

      If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

      See more
      Russel Werner
      Lead Engineer at StackShare · | 32 upvotes · 2.2M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more
      Python logo

      Python

      239.8K
      195.7K
      6.9K
      A clear and powerful object-oriented programming language, comparable to Perl, Ruby, Scheme, or Java.
      239.8K
      195.7K
      + 1
      6.9K
      PROS OF PYTHON
      • 1.2K
        Great libraries
      • 961
        Readable code
      • 846
        Beautiful code
      • 787
        Rapid development
      • 689
        Large community
      • 435
        Open source
      • 393
        Elegant
      • 282
        Great community
      • 272
        Object oriented
      • 220
        Dynamic typing
      • 77
        Great standard library
      • 59
        Very fast
      • 55
        Functional programming
      • 49
        Easy to learn
      • 45
        Scientific computing
      • 35
        Great documentation
      • 29
        Productivity
      • 28
        Easy to read
      • 28
        Matlab alternative
      • 23
        Simple is better than complex
      • 20
        It's the way I think
      • 19
        Imperative
      • 18
        Free
      • 18
        Very programmer and non-programmer friendly
      • 17
        Powerfull language
      • 17
        Machine learning support
      • 16
        Fast and simple
      • 14
        Scripting
      • 12
        Explicit is better than implicit
      • 11
        Ease of development
      • 10
        Clear and easy and powerfull
      • 9
        Unlimited power
      • 8
        It's lean and fun to code
      • 8
        Import antigravity
      • 7
        Print "life is short, use python"
      • 7
        Python has great libraries for data processing
      • 6
        Although practicality beats purity
      • 6
        Flat is better than nested
      • 6
        Great for tooling
      • 6
        Rapid Prototyping
      • 6
        Readability counts
      • 6
        High Documented language
      • 6
        I love snakes
      • 6
        Fast coding and good for competitions
      • 6
        There should be one-- and preferably only one --obvious
      • 6
        Now is better than never
      • 5
        Great for analytics
      • 5
        Lists, tuples, dictionaries
      • 4
        Easy to learn and use
      • 4
        Simple and easy to learn
      • 4
        Easy to setup and run smooth
      • 4
        Web scraping
      • 4
        CG industry needs
      • 4
        Socially engaged community
      • 4
        Complex is better than complicated
      • 4
        Multiple Inheritence
      • 4
        Beautiful is better than ugly
      • 4
        Plotting
      • 3
        If the implementation is hard to explain, it's a bad id
      • 3
        Special cases aren't special enough to break the rules
      • 3
        Pip install everything
      • 3
        List comprehensions
      • 3
        No cruft
      • 3
        Generators
      • 3
        Import this
      • 3
        It is Very easy , simple and will you be love programmi
      • 3
        Many types of collections
      • 3
        If the implementation is easy to explain, it may be a g
      • 2
        Batteries included
      • 2
        Should START with this but not STICK with This
      • 2
        Powerful language for AI
      • 2
        Can understand easily who are new to programming
      • 2
        Flexible and easy
      • 2
        Good for hacking
      • 2
        A-to-Z
      • 2
        Because of Netflix
      • 2
        Only one way to do it
      • 2
        Better outcome
      • 1
        Sexy af
      • 1
        Slow
      • 1
        Securit
      • 0
        Ni
      • 0
        Powerful
      CONS OF PYTHON
      • 53
        Still divided between python 2 and python 3
      • 28
        Performance impact
      • 26
        Poor syntax for anonymous functions
      • 22
        GIL
      • 19
        Package management is a mess
      • 14
        Too imperative-oriented
      • 12
        Hard to understand
      • 12
        Dynamic typing
      • 12
        Very slow
      • 8
        Indentations matter a lot
      • 8
        Not everything is expression
      • 7
        Incredibly slow
      • 7
        Explicit self parameter in methods
      • 6
        Requires C functions for dynamic modules
      • 6
        Poor DSL capabilities
      • 6
        No anonymous functions
      • 5
        Fake object-oriented programming
      • 5
        Threading
      • 5
        The "lisp style" whitespaces
      • 5
        Official documentation is unclear.
      • 5
        Hard to obfuscate
      • 5
        Circular import
      • 4
        Lack of Syntax Sugar leads to "the pyramid of doom"
      • 4
        The benevolent-dictator-for-life quit
      • 4
        Not suitable for autocomplete
      • 2
        Meta classes
      • 1
        Training wheels (forced indentation)

      related Python posts

      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 10.2M views

      How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

      Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

      Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

      https://eng.uber.com/distributed-tracing/

      (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

      Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

      See more
      Nick Parsons
      Building cool things on the internet 🛠️ at Stream · | 35 upvotes · 3.5M views

      Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.

      We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)

      We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.

      Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.

      #FrameworksFullStack #Languages

      See more