StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. AutoMLPipeline vs Gradio

AutoMLPipeline vs Gradio

OverviewComparisonAlternatives

Overview

AutoMLPipeline
AutoMLPipeline
Stacks0
Followers7
Votes0
GitHub Stars368
Forks28
Gradio
Gradio
Stacks37
Followers24
Votes0
GitHub Stars40.4K
Forks3.1K

AutoMLPipeline vs Gradio: What are the differences?

What is AutoMLPipeline? A package that makes it trivial to create and evaluate machine learning pipeline architectures (by IBM). It is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and automatically discover optimal structures for machine learning prediction and classification.

What is Gradio? *GUIs for Faster ML Prototyping and Sharing *. It allows you to quickly create customizable UI components around your TensorFlow or PyTorch models, or even arbitrary Python functions. Mix and match components to support any combination of inputs and outputs.

AutoMLPipeline and Gradio belong to "Machine Learning Tools" category of the tech stack.

Some of the features offered by AutoMLPipeline are:

  • Pipeline API that allows high-level description of processing workflow
  • Common API wrappers for ML libs including Scikitlearn, DecisionTree, etc
  • Symbolic pipeline parsing for easy expression of complexed pipeline structures

On the other hand, Gradio provides the following key features:

  • Customizable Components
  • Multiple Inputs and Outputs
  • Sharing Interfaces Publicly & Privacy

AutoMLPipeline is an open source tool with 187 GitHub stars and 18 GitHub forks. Here's a link to AutoMLPipeline's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

AutoMLPipeline
AutoMLPipeline
Gradio
Gradio

It is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and automatically discover optimal structures for machine learning prediction and classification.

It allows you to quickly create customizable UI components around your TensorFlow or PyTorch models, or even arbitrary Python functions. Mix and match components to support any combination of inputs and outputs.

Pipeline API that allows high-level description of processing workflow; Common API wrappers for ML libs including Scikitlearn, DecisionTree, etc; Symbolic pipeline parsing for easy expression of complexed pipeline structures; Easily extensible architecture by overloading just two main interfaces: fit! and transform!; Meta-ensembles that allow composition of ensembles of ensembles (recursively if needed) for robust prediction routines; Categorical and numerical feature selectors for specialized preprocessing routines based on types
Customizable Components; Multiple Inputs and Outputs; Sharing Interfaces Publicly & Privacy
Statistics
GitHub Stars
368
GitHub Stars
40.4K
GitHub Forks
28
GitHub Forks
3.1K
Stacks
0
Stacks
37
Followers
7
Followers
24
Votes
0
Votes
0
Integrations
scikit-learn
scikit-learn
Jupyter
Jupyter
TensorFlow
TensorFlow
PyTorch
PyTorch
Matplotlib
Matplotlib
scikit-learn
scikit-learn

What are some alternatives to AutoMLPipeline, Gradio?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope