Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.
AWS Direct Connect makes it easy to establish a dedicated network connection from your premises to AWS. Using AWS Direct Connect, you can establish private connectivity between AWS and your datacenter, office, or colocation environment, which in many cases can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections. | You can use it to extract information about people, places, events and much more, mentioned in text documents, news articles or blog posts. You can use it to understand sentiment about your product on social media or parse intent from customer conversations happening in a call center or a messaging app. You can analyze text uploaded in your request or integrate with your document storage on Google Cloud Storage. |
Reduces Your Bandwidth Costs – If you have bandwidth-heavy workloads that you wish to run in AWS, AWS Direct Connect reduces your network costs into and out of AWS in two ways. First, by transferring data to and from AWS directly, you can reduce your bandwidth commitment to your Internet service provider. Second, all data transferred over your dedicated connection is charged at the reduced AWS Direct Connect data transfer rate rather than Internet data transfer rates.;Consistent Network Performance – Network latency over the Internet can vary given that the Internet is constantly changing how data gets from point A to B. With AWS Direct Connect, you choose the data that utilizes the dedicated connection and how that data is routed which can provide a more consistent network experience over Internet-based connections.;Compatible with all AWS Services – AWS Direct Connect is a network service, and works with all AWS services that are accessible over the Internet, such as Amazon Simple Storage Service (Amazon S3), Elastic Compute Cloud (Amazon EC2), and Amazon Virtual Private Cloud (Amazon VPC). | - |
Statistics | |
Stacks 39 | Stacks 46 |
Followers 61 | Followers 131 |
Votes 0 | Votes 0 |
Pros & Cons | |
No community feedback yet | Cons
|

rasa NLU (Natural Language Understanding) is a tool for intent classification and entity extraction. You can think of rasa NLU as a set of high level APIs for building your own language parser using existing NLP and ML libraries.

It is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. It comes with pre-trained statistical models and word vectors, and currently supports tokenization for 49+ languages.

It can be used to complement any regular touch user interface with a real time voice user interface. It offers real time feedback for faster and more intuitive experience that enables end user to recover from possible errors quickly and with no interruptions.

Turn emails, tweets, surveys or any text into actionable data. Automate business workflows and saveExtract and classify information from text. Integrate with your App within minutes. Get started for free.

It is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the efficient patterns to build the system by parts, or chaining them into a Flow for an end-to-end experience.

It provides an easy method to compute dense vector representations for sentences, paragraphs, and images. The models are based on transformer networks like BERT / RoBERTa / XLM-RoBERTa etc. and achieve state-of-the-art performance in various tasks.

It is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices.

It provides a set of natural language analysis tools written in Java. It can take raw human language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize and interpret dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases or word dependencies, and indicate which noun phrases refer to the same entities.

Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), part-of-speech tagging (PoS), sense disambiguation and classification.

It provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.