StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Serverless
  4. Serverless Task Processing
  5. AWS Firecracker vs Google Cloud Functions

AWS Firecracker vs Google Cloud Functions

OverviewDecisionsComparisonAlternatives

Overview

Google Cloud Functions
Google Cloud Functions
Stacks478
Followers479
Votes25
AWS Firecracker
AWS Firecracker
Stacks6
Followers34
Votes0
GitHub Stars31.0K
Forks2.1K

AWS Firecracker vs Google Cloud Functions: What are the differences?

What is AWS Firecracker? Secure and fast microVMs for serverless computing. Firecracker is an open source virtualization technology that is purpose-built for creating and managing secure, multi-tenant container and function-based services that provide serverless operational models. Firecracker runs workloads in lightweight virtual machines, called microVMs, which combine the security and isolation properties provided by hardware virtualization technology with the speed and flexibility of containers.

What is Google Cloud Functions? A serverless environment to build and connect cloud services. Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running.

AWS Firecracker and Google Cloud Functions can be primarily classified as "Serverless / Task Processing" tools.

AWS Firecracker is an open source tool with 8.6K GitHub stars and 521 GitHub forks. Here's a link to AWS Firecracker's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Google Cloud Functions, AWS Firecracker

Clifford
Clifford

Software Engineer at Bidvest Advisory Services

Mar 28, 2020

Decided

Run cloud service containers instead of cloud-native services

  • Running containers means that your microservices are not "cooked" into a cloud provider's architecture.
  • Moving from one cloud to the next means that you simply spin up new instances of your containers in the new cloud using that cloud's container service.
  • Start redirecting your traffic to the new resources.
  • Turn off the containers in the cloud you migrated from.
71.3k views71.3k
Comments

Detailed Comparison

Google Cloud Functions
Google Cloud Functions
AWS Firecracker
AWS Firecracker

Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running

Firecracker is an open source virtualization technology that is purpose-built for creating and managing secure, multi-tenant container and function-based services that provide serverless operational models. Firecracker runs workloads in lightweight virtual machines, called microVMs, which combine the security and isolation properties provided by hardware virtualization technology with the speed and flexibility of containers.

Statistics
GitHub Stars
-
GitHub Stars
31.0K
GitHub Forks
-
GitHub Forks
2.1K
Stacks
478
Stacks
6
Followers
479
Followers
34
Votes
25
Votes
0
Pros & Cons
Pros
  • 7
    Serverless Applications
  • 5
    Its not AWS
  • 4
    Simplicity
  • 3
    Free Tiers and Trainging
  • 2
    Simple config with GitLab CI/CD
Cons
  • 1
    Node.js only
  • 0
    Typescript Support
  • 0
    Blaze, pay as you go
No community feedback yet
Integrations
Firebase
Firebase
Google Cloud Storage
Google Cloud Storage
Stackdriver
Stackdriver
No integrations available

What are some alternatives to Google Cloud Functions, AWS Firecracker?

AWS Lambda

AWS Lambda

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Serverless

Serverless

Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more.

Knative

Knative

Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center

OpenFaaS

OpenFaaS

Serverless Functions Made Simple for Docker and Kubernetes

Nuclio

Nuclio

nuclio is portable across IoT devices, laptops, on-premises datacenters and cloud deployments, eliminating cloud lock-ins and enabling hybrid solutions.

Apache OpenWhisk

Apache OpenWhisk

OpenWhisk is an open source serverless platform. It is enterprise grade and accessible to all developers thanks to its superior programming model and tooling. It powers IBM Cloud Functions, Adobe I/O Runtime, Naver, Nimbella among others.

Cloud Functions for Firebase

Cloud Functions for Firebase

Cloud Functions for Firebase lets you create functions that are triggered by Firebase products, such as changes to data in the Realtime Database, uploads to Cloud Storage, new user sign ups via Authentication, and conversion events in Analytics.

AWS Batch

AWS Batch

It enables developers, scientists, and engineers to easily and efficiently run hundreds of thousands of batch computing jobs on AWS. It dynamically provisions the optimal quantity and type of compute resources (e.g., CPU or memory optimized instances) based on the volume and specific resource requirements of the batch jobs submitted.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase