StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Gluon vs TransmogrifAI

Gluon vs TransmogrifAI

OverviewComparisonAlternatives

Overview

Gluon
Gluon
Stacks29
Followers80
Votes3
GitHub Stars2.3K
Forks219
TransmogrifAI
TransmogrifAI
Stacks8
Followers20
Votes0
GitHub Stars2.3K
Forks401

Gluon vs TransmogrifAI: What are the differences?

Gluon: Deep Learning API from AWS and Microsoft. A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components; TransmogrifAI: Automated machine learning for structured data (by Salesforce). TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Spark with minimal hand tuning.

Gluon and TransmogrifAI can be primarily classified as "Machine Learning" tools.

TransmogrifAI is an open source tool with 1.57K GitHub stars and 271 GitHub forks. Here's a link to TransmogrifAI's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Gluon
Gluon
TransmogrifAI
TransmogrifAI

A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components.

TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library for building modular, reusable, strongly typed machine learning workflows on Spark with minimal hand tuning

Simple, Easy-to-Understand Code: Gluon offers a full set of plug-and-play neural network building blocks, including predefined layers, optimizers, and initializers.;Flexible, Imperative Structure: Gluon does not require the neural network model to be rigidly defined, but rather brings the training algorithm and model closer together to provide flexibility in the development process.;Dynamic Graphs: Gluon enables developers to define neural network models that are dynamic, meaning they can be built on the fly, with any structure, and using any of Python’s native control flow.;High Performance: Gluon provides all of the above benefits without impacting the training speed that the underlying engine provides.
-
Statistics
GitHub Stars
2.3K
GitHub Stars
2.3K
GitHub Forks
219
GitHub Forks
401
Stacks
29
Stacks
8
Followers
80
Followers
20
Votes
3
Votes
0
Pros & Cons
Pros
  • 3
    Good learning materials
No community feedback yet
Integrations
No integrations available
Apache Spark
Apache Spark

What are some alternatives to Gluon, TransmogrifAI?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope