StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Keras vs PredictionIO

Keras vs PredictionIO

OverviewDecisionsComparisonAlternatives

Overview

PredictionIO
PredictionIO
Stacks67
Followers110
Votes8
Keras
Keras
Stacks1.1K
Followers1.1K
Votes22

Keras vs PredictionIO: What are the differences?

Keras: Deep Learning library for Theano and TensorFlow. Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/; PredictionIO: Open Source Machine Learning Server. PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Keras and PredictionIO can be primarily classified as "Machine Learning" tools.

Some of the features offered by Keras are:

  • neural networks API
  • Allows for easy and fast prototyping
  • Convolutional networks support

On the other hand, PredictionIO provides the following key features:

  • Integrated with state-of-the-art machine learning algorithms. Fine-tune, evaluate and implement them scientifically.
  • Customize the modularized open codebase to fulfill any unique prediction requirement.
  • Built on top of scalable frameworks such as Hadoop and Cascading. Ready to handle data of any scale.

"Easy and fast NN prototyping" is the primary reason why developers consider Keras over the competitors, whereas "Predict Future" was stated as the key factor in picking PredictionIO.

Keras and PredictionIO are both open source tools. It seems that Keras with 42.5K GitHub stars and 16.2K forks on GitHub has more adoption than PredictionIO with 11.8K GitHub stars and 1.92K GitHub forks.

StyleShare Inc., Home61, and Suggestic are some of the popular companies that use Keras, whereas PredictionIO is used by 500 Startups, Betaout, and Tokopedia. Keras has a broader approval, being mentioned in 52 company stacks & 50 developers stacks; compared to PredictionIO, which is listed in 5 company stacks and 5 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on PredictionIO, Keras

Adithya
Adithya

Student at PES UNIVERSITY

May 11, 2020

Needs advice

I have just started learning some basic machine learning concepts. So which of the following frameworks is better to use: Keras / TensorFlow/PyTorch. I have prior knowledge in python(and even pandas), java, js and C. It would be nice if something could point out the advantages of one over the other especially in terms of resources, documentation and flexibility. Also, could someone tell me where to find the right resources or tutorials for the above frameworks? Thanks in advance, hope you are doing well!!

107k views107k
Comments
philippe
philippe

Research & Technology & Innovation | Software & Data & Cloud | Professor in Computer Science

Sep 13, 2020

Review

Hello Amina, You need first to clearly identify the input data type (e.g. temporal data or not? seasonality or not?) and the analysis type (e.g., time series?, categories?, etc.). If you can answer these questions, that would be easier to help you identify the right tools (or Python libraries). If time series and Python, you have choice between Pendas/Statsmodels/Serima(x) (if seasonality) or deep learning techniques with Keras.

Good work, Philippe

4.65k views4.65k
Comments
Fabian
Fabian

Software Developer at DCSIL

Feb 11, 2021

Decided

For my company, we may need to classify image data. Keras provides a high-level Machine Learning framework to achieve this. Specifically, CNN models can be compactly created with little code. Furthermore, already well-proven classifiers are available in Keras, which could be used as Transfer Learning for our use case.

We chose Keras over PyTorch, another Machine Learning framework, as our preliminary research showed that Keras is more compatible with .js. You can also convert a PyTorch model into TensorFlow.js, but it seems that Keras needs to be a middle step in between, which makes Keras a better choice.

55.4k views55.4k
Comments

Detailed Comparison

PredictionIO
PredictionIO
Keras
Keras

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

Integrated with state-of-the-art machine learning algorithms. Fine-tune, evaluate and implement them scientifically.;Customize the modularized open codebase to fulfill any unique prediction requirement.;Built on top of scalable frameworks such as Hadoop and Cascading. Ready to handle data of any scale.;Build powerful features in minutes, not months. Streamline the data engineering process.
neural networks API;Allows for easy and fast prototyping;Convolutional networks support;Recurent networks support;Runs on GPU
Statistics
Stacks
67
Stacks
1.1K
Followers
110
Followers
1.1K
Votes
8
Votes
22
Pros & Cons
Pros
  • 8
    Predict Future
Pros
  • 8
    Quality Documentation
  • 7
    Supports Tensorflow and Theano backends
  • 7
    Easy and fast NN prototyping
Cons
  • 4
    Hard to debug
Integrations
No integrations available
TensorFlow
TensorFlow
scikit-learn
scikit-learn
Python
Python

What are some alternatives to PredictionIO, Keras?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

Gluon

Gluon

A new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance. Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope