What is Traefik and what are its top alternatives?
Top Alternatives to Traefik
- HAProxy
HAProxy (High Availability Proxy) is a free, very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. ...
- Kong
Kong is a scalable, open source API Layer (also known as an API Gateway, or API Middleware). Kong controls layer 4 and 7 traffic and is extended through Plugins, which provide extra functionality and services beyond the core platform. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Istio
Istio is an open platform for providing a uniform way to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data. Istio's control plane provides an abstraction layer over the underlying cluster management platform, such as Kubernetes, Mesos, etc. ...
- Envoy
Originally built at Lyft, Envoy is a high performance C++ distributed proxy designed for single services and applications, as well as a communication bus and “universal data plane” designed for large microservice “service mesh” architectures. ...
- Ambassador
Map services to arbitrary URLs in a single, declarative YAML file. Configure routes with CORS support, circuit breakers, timeouts, and more. Replace your Kubernetes ingress controller. Route gRPC, WebSockets, or HTTP. ...
- Caddy
Caddy 2 is a powerful, enterprise-ready, open source web server with automatic HTTPS written in Go. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
Traefik alternatives & related posts
- Load balancer132
- High performance102
- Very fast69
- Proxying for tcp and http58
- SSL termination55
- Open source31
- Reliable27
- Free20
- Well-Documented18
- Very popular12
- Runs health checks on backends7
- Suited for very high traffic web sites7
- Scalable6
- Ready to Docker5
- Powers many world's most visited sites4
- Simple3
- Ssl offloading2
- Work with NTLM2
- Available as a plugin for OPNsense1
- Redis1
- Becomes your single point of failure6
related HAProxy posts
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
Over the past year, we've shifted our philosophy on managed services and have moved several critical parts of our infrastructure away from self-managed options. The most prominent was our shift away from HAProxy to AWS's managed application load balancers (ALBs).
As we scaled, managing our HAProxy fleet became a larger and larger burden. We spent a significant amount of time tuning our configuration files and benchmarking different Amazon EC2 instance types to maximize throughput.
Emerging needs like #DDoS protection and auto scaling turned into large projects that we needed to schedule urgently. Instead of continuing this investment, we chose to shift to managed ALB instances. This was a large project, but it quickly paid for itself as we've nearly eliminated the time spent managing load balancers. We also gained DDoS protection and auto scaling "for free".
- Easy to maintain37
- Easy to install32
- Flexible26
- Great performance21
- Api blueprint7
- Custom Plugins4
- Kubernetes-native3
- Security2
- Has a good plugin infrastructure2
- Agnostic2
- Load balancing1
- Documentation is clear1
- Very customizable1
related Kong posts
Hello :) We are using Datadog on Kong to monitor the metrics and analytics.
We feel that the cost associated with Datadog is high in terms of custom metrics and indexations. So, we planned to find an alternative for Datadog and we are looking into Grafana implementation with kong.
Will the shift from Datadog to Grafana be a wise move and flawless?
As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?
NGINX
- High-performance http server1.4K
- Performance893
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- The best of them7
- Supports http/27
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
Istio
- Zero code for logging and monitoring14
- Service Mesh9
- Great flexibility8
- Resiliency5
- Powerful authorization mechanisms5
- Ingress controller5
- Easy integration with Kubernetes and Docker4
- Full Security4
- Performance16
related Istio posts
At my company, we are trying to move away from a monolith into microservices led architecture. We are now stuck with a problem to establish a communication mechanism between microservices. Since, we are planning to use service meshes and something like Dapr/Istio, we are not sure on how to split services between the two. Service meshes offer Traffic Routing or Splitting whereas, Dapr can offer state management and service-service invocation. At the same time both of them provide mLTS, Metrics, Resiliency and tracing. How to choose who should offer what?
As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?
related Envoy posts
We just launched the Segment Config API (try it out for yourself here) — a set of public REST APIs that enable you to manage your Segment configuration. Behind the scenes the Config API is built with Go , GRPC and Envoy.
At Segment, we build new services in Go by default. The language is simple so new team members quickly ramp up on a codebase. The tool chain is fast so developers get immediate feedback when they break code, tests or integrations with other systems. The runtime is fast so it performs great at scale.
For the newest round of APIs we adopted the GRPC service #framework.
The Protocol Buffer service definition language makes it easy to design type-safe and consistent APIs, thanks to ecosystem tools like the Google API Design Guide for API standards, uber/prototool
for formatting and linting .protos and lyft/protoc-gen-validate
for defining field validations, and grpc-gateway
for defining REST mapping.
With a well designed .proto, its easy to generate a Go server interface and a TypeScript client, providing type-safe RPC between languages.
For the API gateway and RPC we adopted the Envoy service proxy.
The internet-facing segmentapis.com
endpoint is an Envoy front proxy that rate-limits and authenticates every request. It then transcodes a #REST / #JSON request to an upstream GRPC request. The upstream GRPC servers are running an Envoy sidecar configured for Datadog stats.
The result is API #security , #reliability and consistent #observability through Envoy configuration, not code.
We experimented with Swagger service definitions, but the spec is sprawling and the generated clients and server stubs leave a lot to be desired. GRPC and .proto and the Go implementation feels better designed and implemented. Thanks to the GRPC tooling and ecosystem you can generate Swagger from .protos, but it’s effectively impossible to go the other way.
At uSwitch we wanted a way to load balance between our multiple Kubernetes clusters in AWS to give us added redundancy. We already had ingresses defined for all our applications so we wanted to build on top of that, instead of creating a new system that would require our various teams to change code/config etc.
Envoy seemed to tick a lot of boxes:
- Loadbalancing capabilities right out of the box: health checks, circuit breaking, retries etc.
- Tracing and prometheus metrics support
- Lightweight
- Good community support
This was all good but what really sold us was the api that supported dynamic configuration. This would allow us to dynamically configure envoy to route to ingresses and clusters as they were created or destroyed.
To do this we built a tool called Yggdrasil using their Go sdk. Yggdrasil effectively just creates envoy configuration from Kubernetes ingress objects, so you point Yggdrasil at your kube clusters, it generates config from the ingresses and then envoy can loadbalance between your clusters for you. This is all done dynamically so as soon as new ingress is created the envoy nodes get updated with the new config. Importantly this all worked with what we already had, no need to create new config for every application, we just put this on top of it.
Ambassador
- Edge-proxy3
- Kubernetes friendly configuration1
related Ambassador posts
- Easy HTTP/2 Server Push6
- Sane config file syntax6
- Builtin HTTPS4
- Letsencrypt support2
- Runtime config API2
- New kid3
related Caddy posts
We used to primarily use nginx for our static web server and proxy in-front of Node.js. Now, we use Caddy. And we couldn't be happier.
Caddy is simpler on all fronts. Configuration is easier. Free HTTPS out of the box. Some fantastic plugins. And for the most part, it's fast.
Don't get me wrong, it's not lost on me that Nginx is actually a superior product.
But for the times when you don't need that extra performance, and complexity - take a look at Caddy.
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast897
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Its everywhere12
- Future Language of The Web12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark