Alternatives to Compose logo

Alternatives to Compose

Docker Compose, Docker, Composer, Kubernetes, and Docker Swarm are the most popular alternatives and competitors to Compose.
182
95
+ 1
205

What is Compose and what are its top alternatives?

Compose makes it easy to spin up multiple open source databases with just one click. Deploy MongoDB for production, take Redis out for a performance test drive, or spin up RethinkDB in development before rolling it out to production.
Compose is a tool in the MongoDB Hosting category of a tech stack.

Compose alternatives & related posts

related Docker Compose posts

GitHub
GitHub
nginx
nginx
ESLint
ESLint
AVA
AVA
Semantic UI React
Semantic UI React
Redux
Redux
React
React
PostgreSQL
PostgreSQL
ExpressJS
ExpressJS
Node.js
Node.js
FeathersJS
FeathersJS
Heroku
Heroku
Amazon EC2
Amazon EC2
Kubernetes
Kubernetes
Jenkins
Jenkins
Docker Compose
Docker Compose
Docker
Docker
#Frontend
#Stack
#Backend
#Containers
#Containerized

Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

See more
Zach Holman
Zach Holman
at Zach Holman · | 14 upvotes · 29K views
Docker Compose
Docker Compose
Docker
Docker
Home Assistant
Home Assistant

I've been recently getting really into home automation- you know, making my house Smart™, which basically means half the time my lights don't turn on and the other half of the time apparently my kitchen faucet needs a static IP address.

But it's been a blast! It's a fun way to write code for yourself, outside of work, to have an impact in the real world. It's a nice way of falling in love with a different side of programming again.

I've used Apple's HomeKit for awhile, since we're pretty all-in in Apple devices at home, but the rough edges have been grating at me more and more. HomeKit is so opaque- you can't see what's wrong, why a device is unresponsive, and most importantly: the compatibility isn't there. HomeKit has a limited selection of — more expensive — accessories, and as you go beyond just simple LED lights, you want a bit more power. Also, we're programmers, dammit, gimme all the things.

Anyway, I've switched to Home Assistant the last few months, and I'm kicking myself I didn't make the switch earlier. As a programmer, it's great: you get the most capability than pretty much any other smart home platform (integrations have been written for most devices and technologies out there today), it's easier to debug, and when you want to go bigger than just simple lights on/off, HA has some really powerful stuff behind it.

I use Home Assistant in conjunction with Docker and Docker Compose; since the config is extracted out, upgrades are usually as easy as a pull of the latest version. I've just started digging into writing integrations for a lesser-used device that I have at home, and HA makes it pretty straightforward to just magically add it to the home network.

It plays well with others, too- we require a VPN connection in to the home network to access our Home Assistant install, and HA has a few tricks to help with that (ignoring the VPN route if you're on a local network, etc). Nice client support for iOS and Android, too.

Anyway, big fan of Home Assistant if you want to go beyond simple home automations and setup. Wish I would have done it a lot earlier. Also, big fan of jumping into all this if you have the time and interest to do so- it's been tickling a different part of my code brain than I've had access to in awhile, and that's been fun in and of itself.

See more

related Docker posts

Tim Nolet
Tim Nolet
Founder, Engineer & Dishwasher at Checkly · | 17 upvotes · 158.9K views
atChecklyHQChecklyHQ
vuex
vuex
Knex.js
Knex.js
PostgreSQL
PostgreSQL
Amazon S3
Amazon S3
AWS Lambda
AWS Lambda
Vue.js
Vue.js
hapi
hapi
Node.js
Node.js
GitHub
GitHub
Docker
Docker
Heroku
Heroku

Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.

We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.

Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.

Enough biz talk, onto tech. The challenges were:

  • Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
  • Update API and back end services to handle and enforce plan limits.
  • Update the UI to kindly state plan limits are in effect on some part of the UI.
  • Update the pricing page to reflect all changes.
  • Keep the actual processing backend, storage and API's as untouched as possible.

In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.

  1. We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
  2. The Vue.js frontend reads these from the vuex store on login.
  3. Based on these values, the UI has simple v-if statements to either just show the feature or show a friendly "please upgrade" button.
  4. The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.

Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.

What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.

Hope this helps anyone building out their SaaS and is in a similar situation.

See more
Ganesa Vijayakumar
Ganesa Vijayakumar
Full Stack Coder | Module Lead · | 15 upvotes · 291.1K views
SonarQube
SonarQube
Codacy
Codacy
Docker
Docker
Git
Git
Apache Maven
Apache Maven
Amazon EC2 Container Service
Amazon EC2 Container Service
Microsoft Azure
Microsoft Azure
Amazon Route 53
Amazon Route 53
Elasticsearch
Elasticsearch
Solr
Solr
Amazon RDS
Amazon RDS
Amazon S3
Amazon S3
Heroku
Heroku
Hibernate
Hibernate
MySQL
MySQL
Node.js
Node.js
Java
Java
Bootstrap
Bootstrap
jQuery Mobile
jQuery Mobile
jQuery UI
jQuery UI
jQuery
jQuery
JavaScript
JavaScript
React Native
React Native
React Router
React Router
React
React

I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.

I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).

As per my work experience and knowledge, I have chosen the followings stacks to this mission.

UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.

Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.

Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.

Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.

Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.

Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.

Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.

Happy Coding! Suggestions are welcome! :)

Thanks, Ganesa

See more
Composer logo

Composer

427
222
11
427
222
+ 1
11
Dependency Manager for PHP
Composer logo
Composer
VS
Compose logo
Compose

related Kubernetes posts

Yshay Yaacobi
Yshay Yaacobi
Software Engineer · | 27 upvotes · 205.8K views
atSolutoSoluto
Docker Swarm
Docker Swarm
Kubernetes
Kubernetes
Visual Studio Code
Visual Studio Code
Go
Go
TypeScript
TypeScript
JavaScript
JavaScript
C#
C#
F#
F#
.NET
.NET

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
GitHub
GitHub
nginx
nginx
ESLint
ESLint
AVA
AVA
Semantic UI React
Semantic UI React
Redux
Redux
React
React
PostgreSQL
PostgreSQL
ExpressJS
ExpressJS
Node.js
Node.js
FeathersJS
FeathersJS
Heroku
Heroku
Amazon EC2
Amazon EC2
Kubernetes
Kubernetes
Jenkins
Jenkins
Docker Compose
Docker Compose
Docker
Docker
#Frontend
#Stack
#Backend
#Containers
#Containerized

Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.

We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.

See more

related Docker Swarm posts

Yshay Yaacobi
Yshay Yaacobi
Software Engineer · | 27 upvotes · 205.8K views
atSolutoSoluto
Docker Swarm
Docker Swarm
Kubernetes
Kubernetes
Visual Studio Code
Visual Studio Code
Go
Go
TypeScript
TypeScript
JavaScript
JavaScript
C#
C#
F#
F#
.NET
.NET

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Elementor logo

Elementor

1.3K
1
0
1.3K
1
+ 1
0
Drag & Drop page builder for WordPress
    Be the first to leave a pro
    Elementor logo
    Elementor
    VS
    Compose logo
    Compose

    related MongoLab posts

    Gregory Koberger
    Gregory Koberger
    Founder · | 12 upvotes · 49.9K views
    atReadMe.ioReadMe.io
    Compose
    Compose
    MongoLab
    MongoLab
    MongoDB Atlas
    MongoDB Atlas
    PostgreSQL
    PostgreSQL
    MySQL
    MySQL
    MongoDB
    MongoDB

    We went with MongoDB , almost by mistake. I had never used it before, but I knew I wanted the *EAN part of the MEAN stack, so why not go all in. I come from a background of SQL (first MySQL , then PostgreSQL ), so I definitely abused Mongo at first... by trying to turn it into something more relational than it should be. But hey, data is supposed to be relational, so there wasn't really any way to get around that.

    There's a lot I love about MongoDB, and a lot I hate. I still don't know if we made the right decision. We've been able to build much quicker, but we also have had some growing pains. We host our databases on MongoDB Atlas , and I can't say enough good things about it. We had tried MongoLab and Compose before it, and with MongoDB Atlas I finally feel like things are in a good place. I don't know if I'd use it for a one-off small project, but for a large product Atlas has given us a ton more control, stability and trust.

    See more

    related MongoDB Atlas posts

    Gregory Koberger
    Gregory Koberger
    Founder · | 12 upvotes · 49.9K views
    atReadMe.ioReadMe.io
    Compose
    Compose
    MongoLab
    MongoLab
    MongoDB Atlas
    MongoDB Atlas
    PostgreSQL
    PostgreSQL
    MySQL
    MySQL
    MongoDB
    MongoDB

    We went with MongoDB , almost by mistake. I had never used it before, but I knew I wanted the *EAN part of the MEAN stack, so why not go all in. I come from a background of SQL (first MySQL , then PostgreSQL ), so I definitely abused Mongo at first... by trying to turn it into something more relational than it should be. But hey, data is supposed to be relational, so there wasn't really any way to get around that.

    There's a lot I love about MongoDB, and a lot I hate. I still don't know if we made the right decision. We've been able to build much quicker, but we also have had some growing pains. We host our databases on MongoDB Atlas , and I can't say enough good things about it. We had tried MongoLab and Compose before it, and with MongoDB Atlas I finally feel like things are in a good place. I don't know if I'd use it for a one-off small project, but for a large product Atlas has given us a ton more control, stability and trust.

    See more
    Jeyabalaji Subramanian
    Jeyabalaji Subramanian
    CTO at FundsCorner · | 11 upvotes · 17.2K views
    atFundsCornerFundsCorner
    MongoDB Atlas
    MongoDB Atlas
    MongoDB
    MongoDB
    PostgreSQL
    PostgreSQL

    Database is at the heart of any technology stack. It is no wonder we spend a lot of time choosing the right database before we dive deep into product building.

    When we were faced with the question of what database to choose, we set the following criteria: The database must (1) Have a very high transaction throughput. We wanted to err on the side of "reads" but not on the "writes". (2) be flexible. I.e. be adaptive enough to take - in data variations. Since we are an early-stage start-up, not everything is set in stone. (3) Fast & easy to work with (4) Cloud Native. We did not want to spend our time in "ANY" infrastructure management.

    Based on the above, we picked PostgreSQL and MongoDB for evaluation. We tried a few iterations on hardening the data model with PostgreSQL, but realised that we can move much faster by loosely defining the schema (with just a few fundamental principles intact).

    Thus we switched to MongoDB. Before diving in, we validated a few core principles such as: (1) Transaction guarantee. Until 3.6, MongoDB supports Transaction guarantee at Document level. From 4.0 onwards, you can achieve transaction guarantee across multiple documents.

    (2) Primary Keys & Indexing: Like any RDBMS, MongoDB supports unique keys & indexes to ensure data integrity & search ability

    (3) Ability to join data across data sets: MongoDB offers a super-rich aggregate framework that enables one to filter and group data

    (4) Concurrency handling: MongoDB offers specific operations (such as findOneAndUpdate), which when coupled with Optimistic Locking, can be used to achieve concurrency.

    Above all, MongoDB offers a complete no-frills Cloud Database as a service - MongoDB Atlas. This kind of sealed the deal for us.

    Looking back, choosing MongoDB with MongoDB Atlas was one of the best decisions we took and it is serving us well. My only gripe is that there must be a way to scale-up or scale-down the Atlas configuration at different parts of the day with minimal downtime.

    See more
    ScaleGrid logo

    ScaleGrid

    4
    7
    0
    4
    7
    + 1
    0
    Database-as-a-Service: MongoDB, Redis, MySQL, PostgreSQL Hosting
      Be the first to leave a pro
      ScaleGrid logo
      ScaleGrid
      VS
      Compose logo
      Compose