StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Delta Lake vs Mara

Delta Lake vs Mara

OverviewComparisonAlternatives

Overview

Mara
Mara
Stacks5
Followers21
Votes3
Delta Lake
Delta Lake
Stacks105
Followers315
Votes0
GitHub Stars8.4K
Forks1.9K

Delta Lake vs Mara: What are the differences?

What is Delta Lake? Reliable Data Lakes at Scale. An open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads.

What is Mara? A lightweight ETL framework. A lightweight ETL framework with a focus on transparency and complexity reduction.

Delta Lake and Mara can be primarily classified as "Big Data" tools.

Some of the features offered by Delta Lake are:

  • ACID Transactions
  • Scalable Metadata Handling
  • Time Travel (data versioning)

On the other hand, Mara provides the following key features:

  • Data integration pipelines as code: pipelines, tasks and commands are created using declarative Python code.
  • PostgreSQL as a data processing engine.
  • Extensive web ui. The web browser as the main tool for inspecting, running and debugging pipelines.

Delta Lake and Mara are both open source tools. Delta Lake with 1.26K GitHub stars and 210 forks on GitHub appears to be more popular than Mara with 1.24K GitHub stars and 51 GitHub forks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Mara
Mara
Delta Lake
Delta Lake

A lightweight ETL framework with a focus on transparency and complexity reduction.

An open-source storage layer that brings ACID transactions to Apache Spark™ and big data workloads.

Data integration pipelines as code: pipelines, tasks and commands are created using declarative Python code.; PostgreSQL as a data processing engine.; Extensive web ui. The web browser as the main tool for inspecting, running and debugging pipelines.; GNU make semantics. Nodes depend on the completion of upstream nodes. No data dependencies or data flows.; No in-app data processing: command line tools as the main tool for interacting with databases and data.; Single machine pipeline execution based on Python's multiprocessing. No need for distributed task queues. Easy debugging and and output logging.; Cost based priority queues: nodes with higher cost (based on recorded run times) are run first.
ACID Transactions; Scalable Metadata Handling; Time Travel (data versioning); Open Format; Unified Batch and Streaming Source and Sink; Schema Enforcement; Schema Evolution; 100% Compatible with Apache Spark API
Statistics
GitHub Stars
-
GitHub Stars
8.4K
GitHub Forks
-
GitHub Forks
1.9K
Stacks
5
Stacks
105
Followers
21
Followers
315
Votes
3
Votes
0
Pros & Cons
Pros
  • 1
    Great developing experience
  • 1
    ETL Tool
  • 1
    UI focused on ETL development
No community feedback yet
Integrations
No integrations available
Apache Spark
Apache Spark
Hadoop
Hadoop
Amazon S3
Amazon S3

What are some alternatives to Mara, Delta Lake?

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Apache Impala

Apache Impala

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase