StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. HBase vs InfluxDB

HBase vs InfluxDB

OverviewDecisionsComparisonAlternatives

Overview

HBase
HBase
Stacks511
Followers498
Votes15
GitHub Stars5.5K
Forks3.4K
InfluxDB
InfluxDB
Stacks1.0K
Followers1.2K
Votes175

HBase vs InfluxDB: What are the differences?

  1. Scalability: HBase is a distributed database system designed to handle massive amounts of data by partitioning data across multiple servers, allowing for horizontal scalability. In contrast, InfluxDB is generally used for time-series data and is optimized for high write throughput and fast query performance for time-stamped data, making it more suitable for time-series data workloads.

  2. Data Model: HBase is a wide-column store that stores data in tables with rows and columns, similar to a relational database, but with the flexibility to have varying columns for each row. InfluxDB, on the other hand, uses a tag-value-based data model where each data point consists of a measurement, tags, fields, and a timestamp, making it optimal for storing time-series data efficiently.

  3. Query Language: HBase uses Apache HBase Shell or Java API for querying and interacting with the data stored in HBase tables. In contrast, InfluxDB uses Influx Query Language (InfluxQL) or Flux (a functional data scripting language) for querying and manipulating time-series data, offering more advanced querying capabilities specifically tailored for time-series data analysis.

  4. Consistency and Availability: HBase offers strong consistency guarantees, ensuring that all reads and writes are immediately consistent across the distributed system. InfluxDB, on the other hand, prioritizes availability and partition tolerance over strict consistency, emphasizing high availability and fault tolerance for time-series data ingestion and query processing.

  5. Use Cases: HBase is commonly used for online transaction processing (OLTP) applications that require random read/write access to large-scale data sets, whereas InfluxDB is preferred for time-series data workloads such as monitoring, IoT sensor data, DevOps metrics, and real-time analytics where high write throughput and fast query performance are crucial.

  6. Ecosystem Integration: HBase integrates well with the Apache Hadoop ecosystem, providing seamless integration with tools like Apache Hive, Apache Spark, and Apache Flume for Big Data processing and analytics, while InfluxDB integrates with various monitoring and visualization tools like Grafana, Prometheus, and Telegraf for real-time monitoring and visualization of time-series data.

In Summary, HBase is more suited for large-scale random read/write applications with strong consistency guarantees, while InfluxDB excels in time-series data workloads with optimized write throughput and query performance.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on HBase, InfluxDB

Deepak
Deepak

Sep 6, 2021

Needs adviceonJSONJSONInfluxDBInfluxDB

Hi all, I am trying to decide on a database for time-series data. The data could be tracking some simple series like statistics over time or could be a nested JSON (multi-level nested). I have been experimenting with InfluxDB for the former case of a simple list of variables over time. The continuous queries are powerful too. But for the latter case, where InfluxDB requires to flatten out a nested JSON before saving it into the database the complexity arises. The nested JSON could be objects or a list of objects and objects under objects in which a complete flattening doesn't leave the data in a state for the queries I'm thinking.

[ 
  { "timestamp": "2021-09-06T12:51:00Z",
    "name": "Name1",
    "books": [
        { "title": "Book1", "page": 100 },
        { "title": "Book2", "page": 280 },
    ]
  },
 { "timestamp": "2021-09-06T12:52:00Z",
   "name": "Name2",
   "books": [
       { "title": "Book1", "page": 320},
       { "title": "Book2", "page": 530 },
       { "title": "Book3", "page": 150 },
   ]
 }
]

Sample query: With a time range, for name xyz, find all the book title for which # of page < 400.

If I flatten it completely, it will result in fields like books_0_title, books_0_page, books_1_title, books_1_page, ... And by losing the nested context it will be hard to return one field (title) where some condition for another field (page) satisfies.

Appreciate any suggestions. Even a piece of generic advice on handling the time-series and choosing the database is welcome!

30.5k views30.5k
Comments
Anonymous
Anonymous

Apr 21, 2020

Needs advice

We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.

So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily

381k views381k
Comments
D
D

Feb 9, 2022

Needs adviceonMilvusMilvusHBaseHBaseRocksDBRocksDB

I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!

174k views174k
Comments

Detailed Comparison

HBase
HBase
InfluxDB
InfluxDB

Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

-
Time-Centric Functions;Scalable Metrics; Events;Native HTTP API;Powerful Query Language;Built-in Explorer
Statistics
GitHub Stars
5.5K
GitHub Stars
-
GitHub Forks
3.4K
GitHub Forks
-
Stacks
511
Stacks
1.0K
Followers
498
Followers
1.2K
Votes
15
Votes
175
Pros & Cons
Pros
  • 9
    Performance
  • 5
    OLTP
  • 1
    Fast Point Queries
Pros
  • 59
    Time-series data analysis
  • 30
    Easy setup, no dependencies
  • 24
    Fast, scalable & open source
  • 21
    Open source
  • 20
    Real-time analytics
Cons
  • 4
    Instability
  • 1
    HA or Clustering is only in paid version
  • 1
    Proprietary query language

What are some alternatives to HBase, InfluxDB?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase