Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Airflow
Airflow

396
368
+ 1
20
Apache Spark
Apache Spark

1.2K
959
+ 1
98
Add tool

Airflow vs Apache Spark: What are the differences?

What is Airflow? A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

What is Apache Spark? Fast and general engine for large-scale data processing. Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Airflow can be classified as a tool in the "Workflow Manager" category, while Apache Spark is grouped under "Big Data Tools".

Some of the features offered by Airflow are:

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.

On the other hand, Apache Spark provides the following key features:

  • Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
  • Write applications quickly in Java, Scala or Python
  • Combine SQL, streaming, and complex analytics

Airflow and Apache Spark are both open source tools. It seems that Apache Spark with 22.5K GitHub stars and 19.4K forks on GitHub has more adoption than Airflow with 12.9K GitHub stars and 4.71K GitHub forks.

According to the StackShare community, Apache Spark has a broader approval, being mentioned in 266 company stacks & 112 developers stacks; compared to Airflow, which is listed in 72 company stacks and 33 developer stacks.

What is Airflow?

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

What is Apache Spark?

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Why do developers choose Airflow?
Why do developers choose Apache Spark?

Sign up to add, upvote and see more prosMake informed product decisions

    Be the first to leave a con
    What companies use Airflow?
    What companies use Apache Spark?

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Airflow?
    What tools integrate with Apache Spark?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    What are some alternatives to Airflow and Apache Spark?
    Luigi
    It is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
    Apache NiFi
    An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.
    Jenkins
    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
    AWS Step Functions
    AWS Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.
    Apache Beam
    It implements batch and streaming data processing jobs that run on any execution engine. It executes pipelines on multiple execution environments.
    See all alternatives
    Decisions about Airflow and Apache Spark
    StackShare Editors
    StackShare Editors
    Hadoop
    Hadoop
    Apache Spark
    Apache Spark
    Presto
    Presto

    Around 2015, the growing use of Uber’s data exposed limitations in the ETL and Vertica-centric setup, not to mention the increasing costs. “As our company grew, scaling our data warehouse became increasingly expensive. To cut down on costs, we started deleting older, obsolete data to free up space for new data.”

    To overcome these challenges, Uber rebuilt their big data platform around Hadoop. “More specifically, we introduced a Hadoop data lake where all raw data was ingested from different online data stores only once and with no transformation during ingestion.”

    “In order for users to access data in Hadoop, we introduced Presto to enable interactive ad hoc user queries, Apache Spark to facilitate programmatic access to raw data (in both SQL and non-SQL formats), and Apache Hive to serve as the workhorse for extremely large queries.

    See more
    StackShare Editors
    StackShare Editors
    Hadoop
    Hadoop
    Apache Spark
    Apache Spark
    Presto
    Presto

    To improve platform scalability and efficiency, Uber transitioned from JSON to Parquet, and built a central schema service to manage schemas and integrate different client libraries.

    While the first generation big data platform was vulnerable to upstream data format changes, “ad hoc data ingestions jobs were replaced with a standard platform to transfer all source data in its original, nested format into the Hadoop data lake.”

    These platform changes enabled the scaling challenges Uber was facing around that time: “On a daily basis, there were tens of terabytes of new data added to our data lake, and our Big Data platform grew to over 10,000 vcores with over 100,000 running batch jobs on any given day.”

    See more
    StackShare Editors
    StackShare Editors
    Kafka
    Kafka
    MySQL
    MySQL
    Scala
    Scala
    Apache Spark
    Apache Spark
    Presto
    Presto

    Slack’s data team works to “provide an ecosystem to help people in the company quickly and easily answer questions about usage, so they can make better and data informed decisions.” To achieve that goal, that rely on a complex data pipeline.

    An in-house tool call Sqooper scrapes MySQL backups and pipe them to S3. Job queue and log data is sent to Kafka then persisted to S3 using an open source tool called Secor, which was created by Pinterest.

    For compute, Amazon’s Elastic MapReduce (EMR) creates clusters preconfigured for Presto, Hive, and Spark.

    Presto is then used for ad-hoc questions, validating data assumptions, exploring smaller datasets, and creating visualizations for some internal tools. Hive is used for larger data sets or longer time series data, and Spark allows teams to write efficient and robust batch and aggregation jobs. Most of the Spark pipeline is written in Scala.

    Thrift binds all of these engines together with a typed schema and structured data.

    Finally, the Hive Metastore serves as the ground truth for all data and its schema.

    See more
    StackShare Editors
    StackShare Editors
    Prometheus
    Prometheus
    Chef
    Chef
    Consul
    Consul
    Memcached
    Memcached
    Hack
    Hack
    Swift
    Swift
    Hadoop
    Hadoop
    Terraform
    Terraform
    Airflow
    Airflow
    Apache Spark
    Apache Spark
    Kubernetes
    Kubernetes
    gRPC
    gRPC
    HHVM (HipHop Virtual Machine)
    HHVM (HipHop Virtual Machine)
    Presto
    Presto
    Kotlin
    Kotlin
    Apache Thrift
    Apache Thrift

    Since the beginning, Cal Henderson has been the CTO of Slack. Earlier this year, he commented on a Quora question summarizing their current stack.

    Apps
    • Web: a mix of JavaScript/ES6 and React.
    • Desktop: And Electron to ship it as a desktop application.
    • Android: a mix of Java and Kotlin.
    • iOS: written in a mix of Objective C and Swift.
    Backend
    • The core application and the API written in PHP/Hack that runs on HHVM.
    • The data is stored in MySQL using Vitess.
    • Caching is done using Memcached and MCRouter.
    • The search service takes help from SolrCloud, with various Java services.
    • The messaging system uses WebSockets with many services in Java and Go.
    • Load balancing is done using HAproxy with Consul for configuration.
    • Most services talk to each other over gRPC,
    • Some Thrift and JSON-over-HTTP
    • Voice and video calling service was built in Elixir.
    Data warehouse
    • Built using open source tools including Presto, Spark, Airflow, Hadoop and Kafka.
    Etc
    See more
    Eric Colson
    Eric Colson
    Chief Algorithms Officer at Stitch Fix · | 19 upvotes · 474K views
    atStitch FixStitch Fix
    Kafka
    Kafka
    PostgreSQL
    PostgreSQL
    Amazon S3
    Amazon S3
    Apache Spark
    Apache Spark
    Presto
    Presto
    Python
    Python
    R
    R
    PyTorch
    PyTorch
    Docker
    Docker
    Amazon EC2 Container Service
    Amazon EC2 Container Service
    #AWS
    #Etl
    #ML
    #DataScience
    #DataStack
    #Data

    The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

    Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

    At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

    For more info:

    #DataScience #DataStack #Data

    See more
    Interest over time
    Reviews of Airflow and Apache Spark
    No reviews found
    How developers use Airflow and Apache Spark
    Avatar of Wei Chen
    Wei Chen uses Apache SparkApache Spark

    Spark is good at parallel data processing management. We wrote a neat program to handle the TBs data we get everyday.

    Avatar of Eugene Ivanchenko
    Eugene Ivanchenko uses AirflowAirflow

    Manage the calculation pipeline and data distribution procedures.

    Avatar of Ralic Lo
    Ralic Lo uses Apache SparkApache Spark

    Used Spark Dataframe API on Spark-R for big data analysis.

    Avatar of Kalibrr
    Kalibrr uses Apache SparkApache Spark

    We use Apache Spark in computing our recommendations.

    Avatar of BrainFinance
    BrainFinance uses Apache SparkApache Spark

    As a part of big data machine learning stack (SMACK).

    Avatar of Dotmetrics
    Dotmetrics uses Apache SparkApache Spark

    Big data analytics and nightly transformation jobs.

    Avatar of Christopher Davison
    Christopher Davison uses AirflowAirflow

    Used for scheduling ETL jobs

    How much does Airflow cost?
    How much does Apache Spark cost?
    Pricing unavailable
    Pricing unavailable
    News about Apache Spark
    More news