Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Amazon Athena

501
839
+ 1
49
Snowflake

1.1K
1.2K
+ 1
27
Add tool

Amazon Athena vs Snowflake: What are the differences?

  1. Data Warehouse Architecture: Amazon Athena is a serverless and scalable query service that allows querying data directly from Amazon S3, without the need for infrastructure management. On the other hand, Snowflake is a cloud-based data warehouse platform that provides a multi-cluster shared data architecture, enabling query processing across multiple nodes for better performance.
  2. Data Processing: Athena supports querying structured, semi-structured, and unstructured data using a SQL-like query language. It provides fast and linearly scalable queries with automatic scaling of compute resources. Snowflake, on the other hand, supports both structured and semi-structured data, with advanced data processing capabilities like semi-structured data optimization, result caching, and automatic query optimization.
  3. Concurrency: Athena offers high concurrency with a limit of 20 queries per account, while Snowflake provides higher concurrency with up to 2000 queries per account.
  4. Data Partitioning: Athena partitions data based on the underlying folder structure in Amazon S3, allowing for efficient querying of large datasets. Snowflake enables partitioning based on user-defined columns, which provides more flexibility in managing and optimizing data partitions.
  5. Pricing Model: Athena follows a pay-per-query pricing model, where users only pay for the queries they execute. Snowflake, on the other hand, offers different pricing models, including on-demand and prepaid options based on compute and storage usage.
  6. Data Integration: Amazon Athena integrates seamlessly with other AWS services, such as AWS Glue for data cataloging and AWS Lambda for automation. Snowflake also offers various integrations and connectors with popular data integration platforms, enabling easy data ingestion and integration workflows.

In Summary, Amazon Athena is a serverless and scalable query service designed for querying data directly from Amazon S3, while Snowflake is a cloud-based data warehouse platform with advanced data processing capabilities and a multi-cluster shared data architecture.

Advice on Amazon Athena and Snowflake

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 5 upvotes · 254.4K views
Recommends
on
Amazon RedshiftAmazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
on
Amazon AthenaAmazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Amazon Athena
Pros of Snowflake
  • 16
    Use SQL to analyze CSV files
  • 8
    Glue crawlers gives easy Data catalogue
  • 7
    Cheap
  • 6
    Query all my data without running servers 24x7
  • 4
    No data base servers yay
  • 3
    Easy integration with QuickSight
  • 2
    Query and analyse CSV,parquet,json files in sql
  • 2
    Also glue and athena use same data catalog
  • 1
    No configuration required
  • 0
    Ad hoc checks on data made easy
  • 7
    Public and Private Data Sharing
  • 4
    Multicloud
  • 4
    Good Performance
  • 4
    User Friendly
  • 3
    Great Documentation
  • 2
    Serverless
  • 1
    Economical
  • 1
    Usage based billing
  • 1
    Innovative

Sign up to add or upvote prosMake informed product decisions

27
3.6K
11
2

What is Amazon Athena?

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

What is Snowflake?

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Amazon Athena?
What companies use Snowflake?
Manage your open source components, licenses, and vulnerabilities
Learn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon Athena?
What tools integrate with Snowflake?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Aug 28 2019 at 3:10AM

Segment

PythonJavaAmazon S3+16
7
2671
Jul 2 2019 at 9:34PM

Segment

Google AnalyticsAmazon S3New Relic+25
10
6937
What are some alternatives to Amazon Athena and Snowflake?
Presto
Distributed SQL Query Engine for Big Data
Amazon Redshift Spectrum
With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
Amazon Redshift
It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Spectrum
The community platform for the future.
See all alternatives