Amazon EMR vs Dremio: What are the differences?
Amazon EMR: Distribute your data and processing across a Amazon EC2 instances using Hadoop. Amazon EMR is used in a variety of applications, including log analysis, web indexing, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics. Customers launch millions of Amazon EMR clusters every year; Dremio: Self-service data for everyone. It is a data-as-a-service platform that empowers users to discover, curate, accelerate, and share any data at any time, regardless of location, volume, or structure. Modern data is managed by a wide range of technologies, including relational databases, NoSQL datastores, file systems, Hadoop, and others.
Amazon EMR and Dremio can be primarily classified as "Big Data as a Service" tools.
Some of the features offered by Amazon EMR are:
- Elastic- Amazon EMR enables you to quickly and easily provision as much capacity as you need and add or remove capacity at any time. Deploy multiple clusters or resize a running cluster
- Low Cost- Amazon EMR is designed to reduce the cost of processing large amounts of data. Some of the features that make it low cost include low hourly pricing, Amazon EC2 Spot integration, Amazon EC2 Reserved Instance integration, elasticity, and Amazon S3 integration.
- Flexible Data Stores- With Amazon EMR, you can leverage multiple data stores, including Amazon S3, the Hadoop Distributed File System (HDFS), and Amazon DynamoDB.
On the other hand, Dremio provides the following key features:
- Democratize all your data
- Make your data engineers more productive
- Accelerate your favorite tools