Amazon Redshift Spectrum vs Apache Flink vs Apache Spark

Get Advice Icon

Need advice about which tool to choose?Ask the StackShare community!

Amazon Redshift Spectrum

101
147
+ 1
3
Apache Flink

531
877
+ 1
38
Apache Spark

3K
3.5K
+ 1
140
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Amazon Redshift Spectrum
Pros of Apache Flink
Pros of Apache Spark
  • 1
    Good Performance
  • 1
    Great Documentation
  • 1
    Economical
  • 16
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 4
    Open Source
  • 2
    Low latency
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
  • 3
    Works well for most Datascience usecases
  • 2
    Interactive Query
  • 2
    Machine learning libratimery, Streaming in real
  • 2
    In memory Computation

Sign up to add or upvote prosMake informed product decisions

Cons of Amazon Redshift Spectrum
Cons of Apache Flink
Cons of Apache Spark
    Be the first to leave a con
      Be the first to leave a con
      • 4
        Speed

      Sign up to add or upvote consMake informed product decisions

      36
      296
      1.9K
      1
      982
      132
      - No public GitHub repository available -

      What is Amazon Redshift Spectrum?

      With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.

      What is Apache Flink?

      Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

      What is Apache Spark?

      Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use Amazon Redshift Spectrum?
      What companies use Apache Flink?
      What companies use Apache Spark?

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Amazon Redshift Spectrum?
      What tools integrate with Apache Flink?
      What tools integrate with Apache Spark?

      Sign up to get full access to all the tool integrationsMake informed product decisions

      Blog Posts

      What are some alternatives to Amazon Redshift Spectrum, Apache Flink, and Apache Spark?
      Amazon Athena
      Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.
      Amazon Redshift
      It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
      MySQL
      The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
      PostgreSQL
      PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.
      MongoDB
      MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
      See all alternatives