It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs. | It is a modern data collaboration workspace (like Github for engineering or Figma for design). By acting as a virtual hub for data assets ranging from tables and dashboards to models and code, it enables teams to create a single source of truth for all their data assets, and collaborate across the modern data stack through deep integrations with tools like Slack, data warehouses like Snowflake & Redshift, BI tools like Looker, Sisense & Tableau, data science tools and more. |
Complete T-SQL based analytics – Generally Available; Deeply integrated Apache Spark; Hybrid data integration; Unified user experience | Data catalog;
Data discovery;
Automated column level data lineage;
Data governance, reverse metadata;
Embedded collaboration;
Automated data asset profiling;
Data classifications |
Statistics | |
Stacks 103 | Stacks 7 |
Followers 230 | Followers 9 |
Votes 10 | Votes 0 |
Pros & Cons | |
Pros
Cons
| No community feedback yet |
Integrations | |
| No integrations available | |

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Distributed SQL Query Engine for Big Data

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought.

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.