StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Azure Synapse vs Zato

Azure Synapse vs Zato

OverviewComparisonAlternatives

Overview

Zato
Zato
Stacks12
Followers24
Votes0
GitHub Stars988
Forks246
Azure Synapse
Azure Synapse
Stacks104
Followers230
Votes10

Zato vs Azure Synapse: What are the differences?

Zato: Open-source ESB, SOA, REST and Cloud Integrations in Python. Build and orchestrate integration services, expose new or existing APIs, either cloud or on-premise, and use a wide range of connectors, data formats and protocols; Azure Synapse: Analytics service that brings together enterprise data warehousing and Big Data analytics. It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Zato and Azure Synapse belong to "Big Data Tools" category of the tech stack.

Some of the features offered by Zato are:

  • Highly scalable enterprise integration platform and backend application server in Python
  • Browser-based GUI, CLI and API - designed by pragmatists for pragmatists
  • Protocols, industry standards and data formats - Odoo, SAP, IBM MQ, REST, Publish/Subscribe Queues, Single Sign-On, AMQP, SOAP, SQL, NoSQL, Caching, Kafka, WebSockets, LDAP, ElasticSearch, SMS, ZeroMQ, RBAC, Cassandra, S3, JMS and more

On the other hand, Azure Synapse provides the following key features:

  • Complete T-SQL based analytics – Generally Available
  • Deeply integrated Apache Spark
  • Hybrid data integration

Zato is an open source tool with 843 GitHub stars and 195 GitHub forks. Here's a link to Zato's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Zato
Zato
Azure Synapse
Azure Synapse

Connect, integrate and automate all of your systems, APIs and apps, including cloud and legacy ones, using an open-source integration platform in Python. ESB, SOA, REST, API and Cloud Integrations in Python.

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Integrate everything. In Python.; Connect, integrate and automate all of your systems, APIs and apps, including cloud and legacy ones, using an open-source integration platform in Python.;Say goodbye to integration challenges and hello to peace of mind.
Complete T-SQL based analytics – Generally Available; Deeply integrated Apache Spark; Hybrid data integration; Unified user experience
Statistics
GitHub Stars
988
GitHub Stars
-
GitHub Forks
246
GitHub Forks
-
Stacks
12
Stacks
104
Followers
24
Followers
230
Votes
0
Votes
10
Pros & Cons
No community feedback yet
Pros
  • 4
    ETL
  • 3
    Security
  • 2
    Serverless
  • 1
    Doesn't support cross database query
Cons
  • 1
    Concurrency
  • 1
    Dictionary Size Limitation - CCI
Integrations
Docker
Docker
MySQL
MySQL
Linux
Linux
MSSQL
MSSQL
Microsoft Azure
Microsoft Azure
Amazon S3
Amazon S3
PostgreSQL
PostgreSQL
Odoo
Odoo
Ubuntu
Ubuntu
SQL
SQL
No integrations available

What are some alternatives to Zato, Azure Synapse?

Metabase

Metabase

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Superset

Superset

Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase