StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Text & Language Models
  4. Machine Learning As A Service
  5. Continuous Machine Learning vs Paperspace

Continuous Machine Learning vs Paperspace

OverviewComparisonAlternatives

Overview

Paperspace
Paperspace
Stacks4
Followers20
Votes0
Continuous Machine Learning
Continuous Machine Learning
Stacks21
Followers37
Votes0
GitHub Stars4.1K
Forks346

Paperspace vs Continuous Machine Learning: What are the differences?

Paperspace: The way to access and manage limitless computing power in the cloud. It is a high-performance cloud computing and ML development platform for building, training and deploying machine learning models. Tens of thousands of individuals, startups and enterprises use it to iterate faster and collaborate on intelligent, real-time prediction engines; Continuous Machine Learning: CI/CD for Machine Learning Projects. Continuous Machine Learning (CML) is an open-source library for implementing continuous integration & delivery (CI/CD) in machine learning projects. Use it to automate parts of your development workflow, including model training and evaluation, comparing ML experiments across your project history, and monitoring changing datasets.

Paperspace belongs to "Machine Learning as a Service" category of the tech stack, while Continuous Machine Learning can be primarily classified under "Machine Learning Tools".

Some of the features offered by Paperspace are:

  • Intelligent alert
  • Two-factor authentication
  • Share drives

On the other hand, Continuous Machine Learning provides the following key features:

  • GitFlow for data science
  • Auto reports for ML experiments
  • No additional services

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Paperspace
Paperspace
Continuous Machine Learning
Continuous Machine Learning

It is a high-performance cloud computing and ML development platform for building, training and deploying machine learning models. Tens of thousands of individuals, startups and enterprises use it to iterate faster and collaborate on intelligent, real-time prediction engines.

Continuous Machine Learning (CML) is an open-source library for implementing continuous integration & delivery (CI/CD) in machine learning projects. Use it to automate parts of your development workflow, including model training and evaluation, comparing ML experiments across your project history, and monitoring changing datasets.

Intelligent alert; Two-factor authentication; Share drives; Unlimited power; Multiple monitors; Remote access; Simple management.
GitFlow for data science; Auto reports for ML experiments; No additional services
Statistics
GitHub Stars
-
GitHub Stars
4.1K
GitHub Forks
-
GitHub Forks
346
Stacks
4
Stacks
21
Followers
20
Followers
37
Votes
0
Votes
0
Integrations
Golang
Golang
Swift
Swift
Postman
Postman
Airtable
Airtable
Azure IoT Hub
Azure IoT Hub
GitHub
GitHub
Git
Git
GitLab
GitLab
Google Cloud Platform
Google Cloud Platform
DVC
DVC

What are some alternatives to Paperspace, Continuous Machine Learning?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

NanoNets

NanoNets

Build a custom machine learning model without expertise or large amount of data. Just go to nanonets, upload images, wait for few minutes and integrate nanonets API to your application.

Kubeflow

Kubeflow

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

Inferrd

Inferrd

It is the easiest way to deploy Machine Learning models. Start deploying Tensorflow, Scikit, Keras and spaCy straight from your notebook with just one extra line.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope