Need advice about which tool to choose?Ask the StackShare community!
CouchDB vs Oracle: What are the differences?
Developers describe CouchDB as "HTTP + JSON document database with Map Reduce views and peer-based replication". Apache CouchDB is a database that uses JSON for documents, JavaScript for MapReduce indexes, and regular HTTP for its API. CouchDB is a database that completely embraces the web. Store your data with JSON documents. Access your documents and query your indexes with your web browser, via HTTP. Index, combine, and transform your documents with JavaScript. On the other hand, Oracle is detailed as "An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism". Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database.
CouchDB and Oracle belong to "Databases" category of the tech stack.
"JSON" is the primary reason why developers consider CouchDB over the competitors, whereas "Reliable" was stated as the key factor in picking Oracle.
CouchDB is an open source tool with 4.24K GitHub stars and 835 GitHub forks. Here's a link to CouchDB's open source repository on GitHub.
According to the StackShare community, Oracle has a broader approval, being mentioned in 106 company stacks & 92 developers stacks; compared to CouchDB, which is listed in 61 company stacks and 31 developer stacks.
I’m newbie I was developing a pouchdb and couchdb app cause if the sync. Lots of learning very little code available. I dropped the project cause it consumed my life. Yeats later I’m back into it. I researched other db and came across rethinkdb and mongo for the subscription features. With socketio I should be able to create and similar sync feature. Attempted to use mongo. I attempted to use rethink. Rethink for the win. Super clear l. I had it running in minutes on my local machine and I believe it’s supposed to scale easy. Mongo wasn’t as easy and there free online db is so slow what’s the point. Very easy to find mongo code examples and use rethink code in its place. I wish I went this route years ago. All that corporate google Amazon crap get bent. The reason they have so much power in the world is cause you guys are giving it to them.
So, we started using foundationDB for an OLAP system although the inbuilt tools for some core things like aggregation and filtering were negligible, with the high through put of the DB, we were able to handle it on the application. The system has been running pretty well for the past 6 months, although the data load isn’t very high yet, the performance is fairly promising
Our application data all goes in SQL. We will use something like Cosmos or Couch DB if one or both of these conditions are true: * We need to ingest a large amount of bulk data from a third party, and integrating it straight into an RDBMS with referential integrity checks would create a performance hit * We need to ingest a large amount of data that does not have a clearly defined, or consistent schema. In either case, we will have a process that migrates the data from Cosmos/Couch to SQL in a way that doesn't create a noticeable performance hit and ensures that we are not introducing bad data to the system. Because of this, there is a third condition that must be met: the data that is coming in must be something that the users will not need immediately, i.e. stock ticker information, real-time telemetry from other systems for performance/safety monitoring, etc.
We have chosen Tibero over Oracle because we want to offer a PL/SQL-as-a-Service that the users can deploy in any Cloud without concerns from our website at some standard cost. With Oracle Database, developers would have to worry about what they implement and the related costs of each feature but the licensing model from Tibero is just 1 price and we have all features included, so we don't have to worry and developers using our SQLaaS neither. PostgreSQL would be open source. We have chosen Tibero over Oracle because we want to offer a PL/SQL that you can deploy in any Cloud without concerns. PostgreSQL would be the open source option but we need to offer an SQLaaS with encryption and more enterprise features in the background and best value option we have found, it was Tibero Database for PL/SQL-based applications.
We implemented our first large scale EPR application from naologic.com using CouchDB .
Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.
It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.
We wanted a JSON datastore that could save the state of our bioinformatics visualizations without destructive normalization. As a leading NoSQL data storage technology, MongoDB has been a perfect fit for our needs. Plus it's open source, and has an enterprise SLA scale-out path, with support of hosted solutions like Atlas. Mongo has been an absolute champ. So much so that SQL and Oracle have begun shipping JSON column types as a new feature for their databases. And when Fast Healthcare Interoperability Resources (FHIR) announced support for JSON, we basically had our FHIR datalake technology.
In the field of bioinformatics, we regularly work with hierarchical and unstructured document data. Unstructured text data from PDFs, image data from radiographs, phylogenetic trees and cladograms, network graphs, streaming ECG data... none of it fits into a traditional SQL database particularly well. As such, we prefer to use document oriented databases.
MongoDB is probably the oldest component in our stack besides Javascript, having been in it for over 5 years. At the time, we were looking for a technology that could simply cache our data visualization state (stored in JSON) in a database as-is without any destructive normalization. MongoDB was the perfect tool; and has been exceeding expectations ever since.
Trivia fact: some of the earliest electronic medical records (EMRs) used a document oriented database called MUMPS as early as the 1960s, prior to the invention of SQL. MUMPS is still in use today in systems like Epic and VistA, and stores upwards of 40% of all medical records at hospitals. So, we saw MongoDB as something as a 21st century version of the MUMPS database.
Pros of CouchDB
- JSON43
- Open source30
- Highly available18
- Partition tolerant12
- Eventual consistency11
- Sync7
- REST API5
- Attachments mechanism to docs4
- Multi master replication4
- Changes feed3
- REST interface1
- js- and erlang-views1
Pros of Oracle
- Reliable44
- Enterprise33
- High Availability15
- Hard to maintain5
- Expensive5
- Maintainable4
- Hard to use4
- High complexity3
Sign up to add or upvote prosMake informed product decisions
Cons of CouchDB
Cons of Oracle
- Expensive14