StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Data Science Tools
  5. CuPy vs PyXLL

CuPy vs PyXLL

OverviewComparisonAlternatives

Overview

PyXLL
PyXLL
Stacks8
Followers104
Votes8
CuPy
CuPy
Stacks8
Followers27
Votes0
GitHub Stars10.6K
Forks967

PyXLL vs CuPy: What are the differences?

Developers describe PyXLL as "The Python Add-In for Microsoft Excel". Integrate Python into Microsoft Excel Use Excel as your user-facing front-end with calculations, business logic and data access powered by Python.

Works with all 3rd party and open source Python packages. No need to write any VBA!. On the other hand, CuPy is detailed as "A NumPy-compatible matrix library accelerated by CUDA". It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

PyXLL and CuPy can be primarily classified as "Data Science" tools.

Some of the features offered by PyXLL are:

  • User Defined Functions: Write Excel worksheet functions in Python - no VBA required
  • Ribbon Customization: Give your users a rich Excel native experience
  • Macros: No need for VBA, access to the full Excel Object Model in Python

On the other hand, CuPy provides the following key features:

  • It's interface is highly compatible with NumPy in most cases it can be used as a drop-in replacement
  • Supports various methods, indexing, data types, broadcasting and more
  • You can easily make a custom CUDA kernel if you want to make your code run faster, requiring only a small code snippet of C++

CuPy is an open source tool with 4.14K GitHub stars and 373 GitHub forks. Here's a link to CuPy's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

PyXLL
PyXLL
CuPy
CuPy

Integrate Python into Microsoft Excel. Use Excel as your user-facing front-end with calculations, business logic and data access powered by Python. Works with all 3rd party and open source Python packages. No need to write any VBA!

It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

User Defined Functions: Write Excel worksheet functions in Python - no VBA required;Ribbon Customization: Give your users a rich Excel native experience;Macros: No need for VBA, access to the full Excel Object Model in Python;Menu Functions: Call Python functions from Excel menus, and give common tasks keyboard shortcuts;Real Time Data: Stream data to Excel in real-time using Python;Array Functions: Return tables of data to Excel that resize automatically;IntelliSense: Auto-complete worksheet functions as you type them;NumPy and Pandas Integration: Use NumPy and Pandas types in Excel
It's interface is highly compatible with NumPy in most cases it can be used as a drop-in replacement; Supports various methods, indexing, data types, broadcasting and more; You can easily make a custom CUDA kernel if you want to make your code run faster, requiring only a small code snippet of C++; It automatically wraps and compiles it to make a CUDA binary; Compiled binaries are cached and reused in subsequent runs
Statistics
GitHub Stars
-
GitHub Stars
10.6K
GitHub Forks
-
GitHub Forks
967
Stacks
8
Stacks
8
Followers
104
Followers
27
Votes
8
Votes
0
Pros & Cons
Pros
  • 5
    Fully replace VBA with Python
  • 2
    Excellent support
  • 1
    Very good performance
Cons
  • 1
    Cannot be deloyed to mac users
No community feedback yet
Integrations
Python
Python
Microsoft Excel
Microsoft Excel
Pandas
Pandas
NumPy
NumPy
NumPy
NumPy
CUDA
CUDA

What are some alternatives to PyXLL, CuPy?

Pandas

Pandas

Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more.

NumPy

NumPy

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

SciPy

SciPy

Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

Dataform

Dataform

Dataform helps you manage all data processes in your cloud data warehouse. Publish tables, write data tests and automate complex SQL workflows in a few minutes, so you can spend more time on analytics and less time managing infrastructure.

PySpark

PySpark

It is the collaboration of Apache Spark and Python. it is a Python API for Spark that lets you harness the simplicity of Python and the power of Apache Spark in order to tame Big Data.

Anaconda

Anaconda

A free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda.

Dask

Dask

It is a versatile tool that supports a variety of workloads. It is composed of two parts: Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but optimized for interactive computational workloads. Big Data collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of dynamic task schedulers.

Pentaho Data Integration

Pentaho Data Integration

It enable users to ingest, blend, cleanse and prepare diverse data from any source. With visual tools to eliminate coding and complexity, It puts the best quality data at the fingertips of IT and the business.

StreamSets

StreamSets

An end-to-end data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps.

KNIME

KNIME

It is a free and open-source data analytics, reporting and integration platform. KNIME integrates various components for machine learning and data mining through its modular data pipelining concept.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase