Need advice about which tool to choose?Ask the StackShare community!
Dgraph vs Graph Engine: What are the differences?
Dgraph: Fast, Distributed Graph DB. Dgraph's goal is to provide Google production level scale and throughput, with low enough latency to be serving real time user queries, over terabytes of structured data. Dgraph supports GraphQL-like query syntax, and responds in JSON and Protocol Buffers over GRPC and HTTP; Graph Engine: RAM Store + Computation Engine + Graph Model (by Microsoft). The distributed RAM store provides a globally addressable high-performance key-value store over a cluster of machines. Through the RAM store, GE enables the fast random data access power over a large distributed data set.
Dgraph and Graph Engine can be primarily classified as "Graph Databases" tools.
Dgraph and Graph Engine are both open source tools. Dgraph with 9.95K GitHub stars and 695 forks on GitHub appears to be more popular than Graph Engine with 1.75K GitHub stars and 249 GitHub forks.
Hi, I want to create a social network for students, and I was wondering which of these three Oriented Graph DB's would you recommend. I plan to implement machine learning algorithms such as k-means and others to give recommendations and some basic data analyses; also, everything is going to be hosted in the cloud, so I expect the DB to be hosted there. I want the queries to be as fast as possible, and I like good tools to monitor my data. I would appreciate any recommendations or thoughts.
Context:
I released the MVP 6 months ago and got almost 600 users just from my university in Colombia, But now I want to expand it all over my country. I am expecting more or less 20000 users.
I have not used the others but I agree, ArangoDB should meet your needs. If you have worked with RDBMS and SQL before Arango will be a easy transition. AQL is simple yet powerful and deployment can be as small or large as you need. I love the fact that for my local development I can run it as docker container as part of my project and for production I can have multiple machines in a cluster. The project is also under active development and with the latest round of funding I feel comfortable that it will be around a while.
Hi Jaime. I've worked with Neo4j and ArangoDB for a few years and for me, I prefer to use ArangoDB because its query sintax (AQL) is easier. I've built a network topology with both databases and now ArangoDB is the databases for that network topology. Also, ArangoDB has ArangoML that maybe can help you with your recommendation algorithims.
Hi Jaime, I work with Arango for about 3 years quite a lot. Before I do some investigation and choose ArangoDB against Neo4j due to multi-type DB, speed, and also clustering (but we do not use it now). Now we have RMDB and Graph working together. As others said, AQL is quite easy, but u can use some of the drivers like Java Spring, that get you to another level.. If you prefer more copy-paste with little rework, perhaps Neo4j can do the job for you, because there is a bigger community around it.. But I have to solve some issues with the ArangoDB community and its also fast. So I will preffere ArangoDB... Btw, there is a super easy Foxx Microservice tool on Arango that can help you solve basic things faster than write down robust BackEnd.
Pros of Dgraph
- Graphql as a query language is nice if you like apollo3
- Easy set up2
- Low learning curve2
- Open Source1
- High Performance1
Pros of Graph Engine
- Flexiable, very expressive, native C# works1