StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Dremio vs Druid

Dremio vs Druid

OverviewDecisionsComparisonAlternatives

Overview

Druid
Druid
Stacks376
Followers867
Votes32
Dremio
Dremio
Stacks116
Followers348
Votes8

Dremio vs Druid: What are the differences?

  1. Data Storage Design: Dremio is designed as a SQL engine that can connect to various data sources and query them directly, while Druid is structured for OLAP queries, mainly for time series data, with its column-oriented storage and aggregation capabilities.

  2. Query Optimization: Dremio employs dynamic query optimization techniques to enhance query performance by rewriting queries on the fly and accelerating data access. In comparison, Druid focuses on pre-aggregating data during the ingestion process to optimize query speed and efficiency.

  3. Data Ingestion Flexibility: Dremio offers flexibility in data ingestion by allowing data to be ingested as is, with no need for preprocessing, providing a more immediate access to the data. On the other hand, Druid requires a more structured and preprocessed data model during ingestion for optimal query performance.

  4. Real-time Processing: Druid is designed with real-time ingestion and querying in mind, making it more suitable for use cases requiring up-to-date, real-time data analysis. Dremio, while keeping pace with query acceleration, may not be as proficient in real-time data processing capabilities.

  5. Scalability and Distribution: Dremio is built to handle large-scale distributed data processing across multiple nodes, providing scalability for processing vast amounts of data. In contrast, Druid's architecture is focused on horizontal scalability for distributed querying and aggregation tasks within a cluster environment.

  6. Use Cases: Dremio is well-suited for ad-hoc data exploration and interactive analytics, enabling users to query diverse data sources with ease. On the other hand, Druid is particularly effective for data warehousing scenarios where fast OLAP queries on large volumes of time-series data are required.

In Summary, Dremio and Druid differ in their data storage design, query optimization approaches, data ingestion flexibility, real-time processing capabilities, scalability and distribution models, as well as their ideal use cases.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Druid, Dremio

karunakaran
karunakaran

Consultant

Jun 26, 2020

Needs advice

I am trying to build a data lake by pulling data from multiple data sources ( custom-built tools, excel files, CSV files, etc) and use the data lake to generate dashboards.

My question is which is the best tool to do the following:

  1. Create pipelines to ingest the data from multiple sources into the data lake
  2. Help me in aggregating and filtering data available in the data lake.
  3. Create new reports by combining different data elements from the data lake.

I need to use only open-source tools for this activity.

I appreciate your valuable inputs and suggestions. Thanks in Advance.

80.5k views80.5k
Comments
datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments

Detailed Comparison

Druid
Druid
Dremio
Dremio

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Dremio—the data lake engine, operationalizes your data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts.

-
Democratize all your data; Make your data engineers more productive; Accelerate your favorite tools; Self service, for everybody
Statistics
Stacks
376
Stacks
116
Followers
867
Followers
348
Votes
32
Votes
8
Pros & Cons
Pros
  • 15
    Real Time Aggregations
  • 6
    Batch and Real-Time Ingestion
  • 5
    OLAP
  • 3
    OLAP + OLTP
  • 2
    Combining stream and historical analytics
Cons
  • 3
    Limited sql support
  • 2
    Joins are not supported well
  • 1
    Complexity
Pros
  • 3
    Nice GUI to enable more people to work with Data
  • 2
    Connect NoSQL databases with RDBMS
  • 2
    Easier to Deploy
  • 1
    Free
Cons
  • 1
    Works only on Iceberg structured data
Integrations
Zookeeper
Zookeeper
Amazon S3
Amazon S3
Python
Python
Tableau
Tableau
Azure Database for PostgreSQL
Azure Database for PostgreSQL
Qlik Sense
Qlik Sense
PowerBI
PowerBI

What are some alternatives to Druid, Dremio?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Amazon Redshift

Amazon Redshift

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase