StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Business Intelligence
  4. Business Intelligence
  5. Incorta vs Superset

Incorta vs Superset

OverviewComparisonAlternatives

Overview

Superset
Superset
Stacks420
Followers1.0K
Votes45
Incorta
Incorta
Stacks2
Followers4
Votes0

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Superset
Superset
Incorta
Incorta

Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought.

It is a next-generation data analytics and business intelligence platform that excels at rapidly delivering business value from transactional data and is the first real breakthrough in data analytics in 20 years. It provides an integrated end-to-end data experience, from data acquisition and enrichment to visualizing and sharing results. It cuts project implementation time from months to weeks, provides revolutionary query speed, and maintains a unified, single-source of truth for multiple workloads including business intelligence, analytics, and machine learning.

A rich set of visualizations to analyze your data, as well as a flexible way to extend the capabilities;An extensible, high granularity security model allowing intricate rules on who can access which features, and integration with major authentication providers (database, OpenID, LDAP, OAuth & REMOTE_USER through Flask AppBuiler);A simple semantic layer, allowing to control how data sources are displayed in the UI, by defining which fields should show up in which dropdown and which aggregation and function (metrics) are made available to the user;Deep integration with Druid allows for Caravel to stay blazing fast while slicing and dicing large, realtime datasets;
Extensible connector architecture; Parallel data loading; Direct data mapping; Embedded notebooks; Machine learning; Spark; Business views; Materialized views; Enterprise security; Query editor; Dashboards; 3rd party tool support; REST API; Parquet data lake; Blueprints
Statistics
Stacks
420
Stacks
2
Followers
1.0K
Followers
4
Votes
45
Votes
0
Pros & Cons
Pros
  • 13
    Awesome interactive filtering
  • 9
    Free
  • 6
    Wide SQL database support
  • 6
    Shareable & editable dashboards
  • 5
    Great for data collaborating on data exploration
Cons
  • 4
    Link diff db together "Data Modeling "
  • 3
    It is difficult to install on the server
  • 3
    Ugly GUI
No community feedback yet
Integrations
No integrations available
Tableau
Tableau
Power BI
Power BI
Microsoft Excel
Microsoft Excel

What are some alternatives to Superset, Incorta?

Metabase

Metabase

It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating.

Cube

Cube

Cube: the universal semantic layer that makes it easy to connect BI silos, embed analytics, and power your data apps and AI with context.

Power BI

Power BI

It aims to provide interactive visualizations and business intelligence capabilities with an interface simple enough for end users to create their own reports and dashboards.

Pandas

Pandas

Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more.

Mode

Mode

Created by analysts, for analysts, Mode is a SQL-based analytics tool that connects directly to your database. Mode is designed to alleviate the bottlenecks in today's analytical workflow and drive collaboration around data projects.

Google Datastudio

Google Datastudio

It lets you create reports and data visualizations. Data Sources are reusable components that connect a report to your data, such as Google Analytics, Google Sheets, Google AdWords and so forth. You can unlock the power of your data with interactive dashboards and engaging reports that inspire smarter business decisions.

NumPy

NumPy

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

AskNed

AskNed

AskNed is an analytics platform where enterprise users can get answers from their data by simply typing questions in plain English.

Shiny

Shiny

It is an open source R package that provides an elegant and powerful web framework for building web applications using R. It helps you turn your analyses into interactive web applications without requiring HTML, CSS, or JavaScript knowledge.

Redash

Redash

Redash helps you make sense of your data. Connect and query your data sources, build dashboards to visualize data and share them with your company.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase