StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Data Science Tools
  5. KNIME vs SciPy

KNIME vs SciPy

OverviewComparisonAlternatives

Overview

SciPy
SciPy
Stacks1.5K
Followers180
Votes0
GitHub Stars14.2K
Forks5.5K
KNIME
KNIME
Stacks53
Followers46
Votes0

SciPy vs KNIME: What are the differences?

What is SciPy? Scientific Computing Tools for Python. Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

What is KNIME? Create and productionize data science using one easy and intuitive environment. It is a free and open-source data analytics, reporting and integration platform. KNIME integrates various components for machine learning and data mining through its modular data pipelining concept.

SciPy and KNIME belong to "Data Science Tools" category of the tech stack.

SciPy is an open source tool with 7.37K GitHub stars and 3.35K GitHub forks. Here's a link to SciPy's open source repository on GitHub.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

SciPy
SciPy
KNIME
KNIME

Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

It is a free and open-source data analytics, reporting and integration platform. KNIME integrates various components for machine learning and data mining through its modular data pipelining concept.

-
Access, merge, and transform all of your data; Make sense of your data with the tools you choose; Support enterprise-wide data science practices; Leverage insights gained from your data
Statistics
GitHub Stars
14.2K
GitHub Stars
-
GitHub Forks
5.5K
GitHub Forks
-
Stacks
1.5K
Stacks
53
Followers
180
Followers
46
Votes
0
Votes
0
Integrations
No integrations available
Python
Python
Apache Spark
Apache Spark
R Language
R Language
TensorFlow
TensorFlow
Apache Hive
Apache Hive
Apache Impala
Apache Impala
Keras
Keras
H2O
H2O

What are some alternatives to SciPy, KNIME?

Pandas

Pandas

Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more.

NumPy

NumPy

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

PyXLL

PyXLL

Integrate Python into Microsoft Excel. Use Excel as your user-facing front-end with calculations, business logic and data access powered by Python. Works with all 3rd party and open source Python packages. No need to write any VBA!

Dataform

Dataform

Dataform helps you manage all data processes in your cloud data warehouse. Publish tables, write data tests and automate complex SQL workflows in a few minutes, so you can spend more time on analytics and less time managing infrastructure.

PySpark

PySpark

It is the collaboration of Apache Spark and Python. it is a Python API for Spark that lets you harness the simplicity of Python and the power of Apache Spark in order to tame Big Data.

Anaconda

Anaconda

A free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda.

Dask

Dask

It is a versatile tool that supports a variety of workloads. It is composed of two parts: Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but optimized for interactive computational workloads. Big Data collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of dynamic task schedulers.

Pentaho Data Integration

Pentaho Data Integration

It enable users to ingest, blend, cleanse and prepare diverse data from any source. With visual tools to eliminate coding and complexity, It puts the best quality data at the fingertips of IT and the business.

StreamSets

StreamSets

An end-to-end data integration platform to build, run, monitor and manage smart data pipelines that deliver continuous data for DataOps.

Denodo

Denodo

It is the leader in data virtualization providing data access, data governance and data delivery capabilities across the broadest range of enterprise, cloud, big data, and unstructured data sources without moving the data from their original repositories.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase