StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. AI
  3. Development & Training Tools
  4. Machine Learning Tools
  5. Kubeflow vs Tensor2Tensor

Kubeflow vs Tensor2Tensor

OverviewComparisonAlternatives

Overview

Kubeflow
Kubeflow
Stacks205
Followers585
Votes18
Tensor2Tensor
Tensor2Tensor
Stacks4
Followers12
Votes0
GitHub Stars16.7K
Forks3.7K

Kubeflow vs Tensor2Tensor: What are the differences?

Kubeflow: Machine Learning Toolkit for Kubernetes. The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions; Tensor2Tensor: Library of deep learning models & datasets designed to make deep learning more accessible (by Google Brain). It is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. It was developed by researchers and engineers in the Google Brain team and a community of users.

Kubeflow and Tensor2Tensor belong to "Machine Learning Tools" category of the tech stack.

Kubeflow and Tensor2Tensor are both open source tools. It seems that Tensor2Tensor with 9.7K GitHub stars and 2.51K forks on GitHub has more adoption than Kubeflow with 8.57K GitHub stars and 1.35K GitHub forks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Kubeflow
Kubeflow
Tensor2Tensor
Tensor2Tensor

The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.

It is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. It was developed by researchers and engineers in the Google Brain team and a community of users.

-
Many state of the art and baseline models are built-in and new models can be added easily; Many datasets across modalities - text, audio, image - available for generation and use, and new ones can be added easily; Models can be used with any dataset and input mode (or even multiple); all modality-specific processing (e.g. embedding lookups for text tokens) is done with bottom and top transformations, which are specified per-feature in the model; Support for multi-GPU machines and synchronous (1 master, many workers) and asynchronous (independent workers synchronizing through a parameter server) distributed training; Easily swap amongst datasets and models by command-line flag with the data generation script t2t-datagen and the training script t2t-trainer; Train on Google Cloud ML and Cloud TPUs
Statistics
GitHub Stars
-
GitHub Stars
16.7K
GitHub Forks
-
GitHub Forks
3.7K
Stacks
205
Stacks
4
Followers
585
Followers
12
Votes
18
Votes
0
Pros & Cons
Pros
  • 9
    System designer
  • 3
    Customisation
  • 3
    Kfp dsl
  • 3
    Google backed
  • 0
    Azure
No community feedback yet
Integrations
Kubernetes
Kubernetes
Jupyter
Jupyter
TensorFlow
TensorFlow
No integrations available

What are some alternatives to Kubeflow, Tensor2Tensor?

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

scikit-learn

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

PyTorch

PyTorch

PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.

Keras

Keras

Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/

TensorFlow.js

TensorFlow.js

Use flexible and intuitive APIs to build and train models from scratch using the low-level JavaScript linear algebra library or the high-level layers API

Polyaxon

Polyaxon

An enterprise-grade open source platform for building, training, and monitoring large scale deep learning applications.

Streamlit

Streamlit

It is the app framework specifically for Machine Learning and Data Science teams. You can rapidly build the tools you need. Build apps in a dozen lines of Python with a simple API.

MLflow

MLflow

MLflow is an open source platform for managing the end-to-end machine learning lifecycle.

H2O

H2O

H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark.

PredictionIO

PredictionIO

PredictionIO is an open source machine learning server for software developers to create predictive features, such as personalization, recommendation and content discovery.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope