StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Apache Spark vs Mara

Apache Spark vs Mara

OverviewDecisionsComparisonAlternatives

Overview

Apache Spark
Apache Spark
Stacks3.1K
Followers3.5K
Votes140
GitHub Stars42.2K
Forks28.9K
Mara
Mara
Stacks5
Followers21
Votes3

Mara vs Apache Spark: What are the differences?

Mara: A lightweight ETL framework. A lightweight ETL framework with a focus on transparency and complexity reduction; Apache Spark: Fast and general engine for large-scale data processing. Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Mara and Apache Spark can be primarily classified as "Big Data" tools.

Some of the features offered by Mara are:

  • Data integration pipelines as code: pipelines, tasks and commands are created using declarative Python code.
  • PostgreSQL as a data processing engine.
  • Extensive web ui. The web browser as the main tool for inspecting, running and debugging pipelines.

On the other hand, Apache Spark provides the following key features:

  • Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
  • Write applications quickly in Java, Scala or Python
  • Combine SQL, streaming, and complex analytics

Mara and Apache Spark are both open source tools. It seems that Apache Spark with 22.5K GitHub stars and 19.4K forks on GitHub has more adoption than Mara with 1.24K GitHub stars and 51 GitHub forks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Apache Spark, Mara

Nilesh
Nilesh

Technical Architect at Self Employed

Jul 8, 2020

Needs adviceonElasticsearchElasticsearchKafkaKafka

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

576k views576k
Comments

Detailed Comparison

Apache Spark
Apache Spark
Mara
Mara

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

A lightweight ETL framework with a focus on transparency and complexity reduction.

Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk;Write applications quickly in Java, Scala or Python;Combine SQL, streaming, and complex analytics;Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, S3
Data integration pipelines as code: pipelines, tasks and commands are created using declarative Python code.; PostgreSQL as a data processing engine.; Extensive web ui. The web browser as the main tool for inspecting, running and debugging pipelines.; GNU make semantics. Nodes depend on the completion of upstream nodes. No data dependencies or data flows.; No in-app data processing: command line tools as the main tool for interacting with databases and data.; Single machine pipeline execution based on Python's multiprocessing. No need for distributed task queues. Easy debugging and and output logging.; Cost based priority queues: nodes with higher cost (based on recorded run times) are run first.
Statistics
GitHub Stars
42.2K
GitHub Stars
-
GitHub Forks
28.9K
GitHub Forks
-
Stacks
3.1K
Stacks
5
Followers
3.5K
Followers
21
Votes
140
Votes
3
Pros & Cons
Pros
  • 61
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 8
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
Cons
  • 4
    Speed
Pros
  • 1
    ETL Tool
  • 1
    Great developing experience
  • 1
    UI focused on ETL development

What are some alternatives to Apache Spark, Mara?

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Apache Impala

Apache Impala

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Azure Synapse

Azure Synapse

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase