Need advice about which tool to choose?Ask the StackShare community!

MongoDB

93.7K
80.9K
+ 1
4.1K
TiDB

75
175
+ 1
28
Add tool

MongoDB vs TiDB: What are the differences?

Introduction

MongoDB and TiDB are both popular databases used for different purposes. MongoDB is a document-oriented database, while TiDB is a distributed SQL database. Despite the similarities in being NoSQL databases, there are key differences that set them apart from each other.

  1. ACID guarantees: MongoDB follows a flexible schema with no support for strict transactional guarantees. On the other hand, TiDB follows a traditional SQL model and provides strong ACID guarantees.

  2. Scalability and fault tolerance: MongoDB is designed to be horizontally scalable, allowing for easy distribution of data across different nodes. However, it lacks built-in fault tolerance mechanisms and requires manual configuration. Meanwhile, TiDB is designed to be highly scalable and fault-tolerant out-of-the-box, providing automatic sharding and replication.

  3. Consistency model: MongoDB provides eventual consistency by default, where updates to data are not immediately reflected across all replicas. In contrast, TiDB guarantees strong consistency, ensuring that all replicas immediately reflect updates.

  4. SQL support: MongoDB uses its own query language for data manipulation and retrieval, which is based on JavaScript. On the other hand, TiDB supports the SQL query language, making it more familiar for developers who are accustomed to working with relational databases.

  5. Indexing options: MongoDB provides a variety of indexing options, including primary, secondary, compound, and geo indexes. TiDB also offers similar indexing options, but additionally supports clustered indexes for better performance when working with large datasets.

  6. Data model and storage engines: MongoDB supports a flexible document data model, allowing for dynamic schemas and nested data structures. It uses a default storage engine called WiredTiger, but also provides support for pluggable storage engines. In contrast, TiDB follows a relational data model and supports the TiKV storage engine, which is a distributed key-value store optimized for transactional processing.

In summary, MongoDB and TiDB differ in terms of transactional guarantees, scalability, fault tolerance, consistency model, query language support, indexing options, and data model. While MongoDB offers more flexibility and simpler scalability, TiDB provides stronger ACID guarantees, better fault tolerance, and familiar SQL query language support.

Advice on MongoDB and TiDB
Ilias Mentzelos
Software Engineer at Plum Fintech · | 9 upvotes · 244.8K views
Needs advice
on
CouchbaseCouchbase
and
MongoDBMongoDB

Hey, we want to build a referral campaign mechanism that will probably contain millions of records within the next few years. We want fast read access based on IDs or some indexes, and isolation is crucial as some listeners will try to update the same document at the same time. What's your suggestion between Couchbase and MongoDB? Thanks!

See more
Replies (2)
Jon Clarke
Enterprise Account Exec at ScyllaDB · | 4 upvotes · 89K views
Recommends
on
CouchbaseCouchbaseScyllaDBScyllaDB

I am biased (work for Scylla) but it sounds like a KV/wide column would be better in this use case. Document/schema free/lite DBs data stores are easier to get up and running on but are not as scalable (generally) as NoSQL flavors that require a more rigid data model like ScyllaDB. If your data volumes are going to be 10s of TB and transactions per sec 10s of 1000s (or more), look at Scylla. We have something called lightweight transactions (LWT) that can get you consistency.

See more
Recommends
on
MongoDBMongoDB

I have found MongoDB highly consistent and highly available. It suits your needs. We usually trade off partion tolerance fot this. Having said that, I am little biased in recommendation as I haven't had much experience with couchbase on production.

See more
Needs advice
on
MongoDBMongoDBMySQLMySQL
and
PostgreSQLPostgreSQL

I'm planning to build a freelance marketplace website, using tools like Next.js, Firebase Authentication, Node.js, but I need to know which type of database is suitable with performance and powerful features. I'm trying to figure out what the best stack is for this project. If anyone has advice please, I’d love to hear more details. Thanks.

See more
Replies (3)
Reza Malek
at Meam Software Engineering Group · | 9 upvotes · 188.9K views
Recommends
on
PostgreSQLPostgreSQL

Postgres and MySQL are very similar, but Mongo has differences in terms of storage type and the CAP theorem. For your requirement, I prefer Postgres (or MySQL) over MongoDB. Mongo gives you no schema which is not always good. on the other hand, it is more common in NodeJS community, so you may find more articles about Node-Mongo stuff. I suggest to stay with RDBMS if possible.

See more
Nurullah SERT
Recommends
on
MySQLMySQLPostgreSQLPostgreSQL

This is a little about experience. Postgresql is fine. You can use either the related table structure or the json table structure.

See more
Ruslan Rayanov
Recommends
on
MySQLMySQL

We have a ready-made engine for the online exchange and marketplace. To customize it, you only need to know sql. Connecting any database is not a problem. https://falconspace.site/list/solutions

See more
Dennis Kraaijeveld
Needs advice
on
ExpressJSExpressJSMongoDBMongoDB
and
PostgreSQLPostgreSQL

For learning purposes, I am trying to design a dashboard that displays the total revenue from all connected webshops/marketplaces, displaying incoming orders, total orders, etc.

So I will need to get the data (using Node backend) from the Shopify and marketplace APIs, storing this in the database, and get the data from the back end.

My question is:

What kind of database should I use? Is MongoDB fine for storing this kind of data? Or should I go with a SQL database?

See more
Replies (3)
Arash JalaliGhalibaf
Software Engineer at Cafe Bazaar · | 10 upvotes · 253.7K views
Recommends
on
PostgreSQLPostgreSQL

Postgres is a solid database with a promising background. In the relational side of database design, I see Postgres as an absolute; Now the arguments and conflicts come in when talking about NoSQL data types. The truth is jsonb in Postgres is efficient and gives a good performance and storage. In a comparison with MongoDB with the same resources (such as RAM and CPU) with better tools and community, I think you should go for Postgres and use jsonb for some of the data. All in all, don't use a NoSQL database just cause you have the data type matching this tech, have both SQL and NoSQL at the same time.

See more
Recommends
on
MongoDBMongoDB

I have found MongoDB easier to work with. Postgres and SQL in general, in my experience, is harder to work with. While Postgres does provide data consistency, MongoDB provides flexibility. I've found the MongoDB ecosystem to be really great with a good community. I've worked with MongoDB in production and it's been great. I really like the aggregation system and using query operators such as $in, $pull, $push.

While my opinion may be unpopular, I have found MongoDB really great for relational data, using aggregations from a code perspective. In general, data types are also more flexible with MongoDB.

See more
Luciano Bustos
Senior Software Developer · | 1 upvotes · 243.5K views
Recommends
on
PostgreSQLPostgreSQL

I will use PostgreSQL because you have more powerfull feature for data agregation and views (the raw data from shopify and others could be stored as is) and then use views to produce diff. kind of reports unless you wanna create those aggregations/views in nodejs code. HTH

See more
Krunal Shah
Technical Lead at Infynno Solutions · | 7 upvotes · 266.1K views
Needs advice
on
MongoDBMongoDB
and
PostgreSQLPostgreSQL

I want to store the data retrieved from multiple APIs and perform some analytics on it. The data stored in DB will never/hardly change. First, I thought it would be better to retrieve the data and create table columns for them, but some data might have different columns than others. So I thought about storing the JSON response from API directly to the table and use it. So which database will be the better choice, PostgreSQL or MongoDB.

See more
Replies (6)
Nikhil Gurnani
Sr. Backend Engineer at Grappus · | 8 upvotes · 258.4K views
Recommends
on
MongoDBMongoDB

Hey Krunal, your requirement sounds pretty clear and specific to what you want to do with that data. My recommendation to you, would be to use MongoDB. Since schema-less IO is faster in MongoDB, your general speed of reading / writing from and to the database would be quick. Additionally, the aggregate framework is very powerful with large data so that is also something that you can use in computing your analytics.

See more
Maxim Ryakhovskiy
Recommends
on
MongoDBMongoDBMongooseMongoose

I suggest you to go with MongoDB, because it is schema-less, i.e., it permits you to easily manipulate the schema of a table. If you want to add a column, it can be done without much effort. Moreover, MongoDB can deal with more types of data, since the latest is stored as key-value pair. I do not what kind of analysis you are going to do, but NoSQL is not the best choice if you are going to use complex queries. In addition, if you are working with huge amount of data and you are interested in optimising the performance, I suggest you PostgreSQL. Since you are speaking about API and JSON, I guess that you may using Node JS for fetching API. I suggest you to try Mongoose, which facilitate the use of MongoDB with Node JS.

See more
Tarun Batra
Senior Software Developer at Okta · | 3 upvotes · 254.4K views
Recommends
on
MongoDBMongoDBPostgreSQLPostgreSQL

Looks like the use case is to store JSON data. mongoDB and Postgres differ in so many aspects like scaling and consistency. Postgres has excellent JSON support now with the power of SQL. MongoDB is good in handling schema less data. However in this case it seems these differences don’t matter that much. I’d recommend you go with what you are most comfortable with.

See more
Luiz H. Rapatão
Staff Software Engineer at rapatao.com · | 3 upvotes · 254.4K views
Recommends
on
MongoDBMongoDB

I don't have an unquestionable opinion regarding your use case. I only trend to pick the MongoDB since it is schemaless avoiding null columns that you not always know when it is used (it depends on the source of the data). The only drawback that I could consider is the query's complexity in MongoDB, sometimes it is a bit tricky, when compared to the traditional SQL queries.

See more
Bob Bass
President & Full Stack Enginee at Narro, LLC · | 3 upvotes · 254.3K views
Recommends
on
MySQLMySQLPostgreSQLPostgreSQL

This is largely a matter of opinion. I see that someone else responded and recommended MongoDB but since you are doing data analytics, I highly recommend you go with SQL. You're going to have a really hard time normalizing the data when you can't manipulate relationships and bulk edit with a nice update query.

I'm much more experienced with MySQL than any other database and I am having a hard time getting on board with noSQL entirely because it's really hard to query complex data with relationships using noSQL. I'm using Firestore with one of my apps and MongoDB with another app but they both use MySQL for the heavy lifting and then a document database for things like permissions, caching, etc.

It sounds like the type of problem you need to reverse engineer. I'm sure you can imagine what the data sets would look like if you use MongoDB or Postgres. I suspect that putting in a little bit more work up front will pay high dividends and productivity once the data is normalized.

Again - it's largely a matter of preference but I prefer SQL almost every time.

See more
Recommends
on
MongoDBMongoDB

MongoDB should be better for unstructured/less structured data.

See more
Needs advice
on
MongoDBMongoDB
and
PostgreSQLPostgreSQL

I need urgent advice from you all! I am making a web-based food ordering platform which includes 3 different ordering methods (Dine-in using QR code scanning + Take away + Home Delivery) and a table reservation system. We are using React for the front-end, and I need your advice if I should use NestJS or ExpressJS for the backend. And regarding the database, which database should I use, MongoDB or PostgreSQL? Which combination will be better? PS. We want to follow the microservice architecture as scalability, reliability, and usability are the most important Non Functional requirements. Expert advice is needed, please. A load of thanks in advance. Kind Regards, Miqdad

See more
Replies (3)
Stephen Badger | Vital Beats
Senior DevOps Engineer at Vital Beats · | 9 upvotes · 273.4K views
Recommends
on
PostgreSQLPostgreSQL
at

I can't speak for the NestJS vs ExpressJS discussion, but I can given a viewpoint on databases.

The main thing to consider around database choice, is what "shape" the data will be in, and the kind of read/write patterns you expect of that data. The blog example shows up so much for DBMS like MongoDB, because it showcases what NoSQL / document storage is very scalable and performant in: mostly isolated documents with a few views / ways to order them and filter them. In your case, I can imagine a number of "relations" already, which suggest a more traditional SQL solution would work well: You have restaurants, they have maybe a few menus (regular, gluten-free etc), with menu items in, which have different prices over time (25% discount on christmas food just after christmas, 50% off pizzas on wednesdays). Then there's a whole different set of "relations" for people ordering, like showing them past orders, which need to refer to the restaurant etc, and credit card transaction information for refunds etc. That to me suggests PostgreSQL, which will scale quite well if you database design is okay.

PostgreSQL also offers you some extensions, which are just amazing for your use-case. https://postgis.net/ for example will let you query for restaurants based on location, without the big cost that comes from constantly using something like Google Maps API to work out which restaurants are near to someone ordering. Partitioning and window functions will be great for your own use internally too, like answering questions of "What types of takeways perform the best for us, Italian, Mexican?" or in combination with PostGIS, answering questions like "What kind of takeways do we need to market to, to improve our selection?".

While these things can all be implemented in MongoDB, you tend to lose some of the convenience of ACID or have to deal with things like eventual consistency, which requires more thinking on the part of your engineers. PostgreSQL offers decent (if more complex) scalablity and redundancy solutions, and is honestly very well proven and plenty of documentation exists on optimising queries.

See more
Anis Zehani
Recommends
on
MongoDBMongoDB

Hello, i build microservice systems using Angular And Spring (Java) so i can't help with with ur back end choice, BUT, i definitely advice you to use a Nosql database, thus MongoDB of course or even Cassandra if your looking for extreme scalability with zero point of failure. Anyway, Nosql if much more faster then Sql (in your case Postresql DB). All you wanna do with sql can also be done by nosql (not the opposite of course).I also advice you to use docker containers + kubernetes to orchestrate them, if you need scalability and replication, that way your app can support auto scalability (in case ur users number goes high). Best of luck

See more
Carlos Iglesias
Recommends

About PostgreSQL vs MongoDB: short answer. Both are great. Choose what you like the most. Only if you expect millions of users, I‘ll incline with MongoDB.

See more
Needs advice
on
MongoDBMongoDB
and
MySQLMySQL

Hello, I am developing a new project with an internal chat between users. Also, there are complex relationships between the other project entities but I wolud like to build something scalable and fast and right now I am designing the data model. What kind of database would you recommend me to manage all application data? relational like MySQL, no relational like MongoDB or a mixed one? Thank you

See more
Replies (6)
Recommends
on
PostgreSQLPostgreSQL

In MongoDB, a write operation is atomic on the level of a single document, so it's harder to deal with consistency without transactions.

See more
Recommends
on
MongoDBMongoDB

MongoDB supports horizontal scaling through Sharding , distributing data across several machines and facilitating high throughput operations with large sets of data. ... Sharding allows you to add additional instances to increase capacity when required

See more
Recommends
on
ArangoDBArangoDB

If you are trying with "complex relationships", give a chance to learn ArangoDB and Graph databases. Its database structures allow doing this with faster and simpler queries. The database is not as strict as others and allows arbitrary data. The data model is really like a neural network and you will never need foreign keys tables anymore. In Udemy there is a free course about it to get started.

See more
Kit Ruparel
Recommends
on
Apache AuroraApache Aurora

The most important question is where are you planning to host? On-premise, or in the cloud.

Particularly if you are planning to host in either AWS or Azure, then your first point of call should be the PaaS (Platform as a Service) databases supplied by these vendors, as you will find yourself requiring a lot less effort to support them, much easier Disaster Recovery options, and also, depending on how PAYG the database is that you use, potentially also much cheaper costs than having a dedicated database server.

Your question regards 'Relational or not' is obviously key, and you need to consider both your required data structure, as well as the ACID requirements of your application model, as well as the non-functional requirements in terms of scalability, resilience, whether you want security authorisation at the highest application tier, or right down to 'row' level in the database, etc. - however please don't fall into the trap of considering 'NoSQL' as being single category. MongoDB, with its document-store type solution is a very different model to key-value-pair stores (like AWS DynamoDB), or column stores (like AWS RedShift) or for more complex data relationships, Entity Graph Stores (like AWS Neptune), to stores designed for tokenisation and text search (ElasticSearch) etc.

Also critical in all this is how many items you believe you need to index by. RDBMS/SQL stores are great for having as many indexes as you want, other than the slow-down in write speed, whereas databases like Amazon DynamoDB provide blisteringly fast read/write performance, but are very limited on key indexing capabilities.

It feels like you have most experience with SQL/RDBMS technologies, so for the simplest learning curve, and if your application fits it, then I'd personally start by looking at AWS Aurora https://aws.amazon.com/rds/aurora/ .

See more
Daniel Mwakanema
Software Developer at Kuunika - Data for Action · | 2 upvotes · 645.7K views
Recommends
on
MySQLMySQL

FIrstly, it may help if you explain what you mean by "complex relationships between project entities". Secondly, you can build a fast and scalable solution using either. With that said however, the data sounds relational so I would recommend MySQL.

See more
R. Tojo
Recommends
on
MySQLMySQL

I think, Its depend of your project type and your skills. MySQL is good and simple for maintenance but MongoDB need more skills and knowledge. If you work on little project, use MySQL. For your project type, MySQL is enough after you can migrate with PostgreSQL

See more
Prithvi Singh
Application Developer at Montaigne Smart Business Solutions · | 8 upvotes · 924.8K views
Needs advice
on
MongoDBMongoDBMySQLMySQL
and
PostgreSQLPostgreSQL

I am going to work on a real estate project and have to decide on a database. Now, SQL databases can be very efficient if appropriately designed. More relations between the data and less redundancy. But with a #NoSQL database, the development time is reduced, and it is easy to query. Since this is my first time working on the real estate domain, I would like to pick a database that would be efficient in the long run.

See more
Replies (4)
Aric Fedida
Founder, CTO at ASK Technologies Inc · | 15 upvotes · 917K views
Recommends
on
PostgreSQLPostgreSQL

I recommend PostgreSQL as it’s the most powerful out of the 3 databases you mentioned. It supports JSON objects so you can mimic the MongoDB functionality, but I would also argue that SQL is actually quite powerful and in many cases significantly easier to work with than with NoSQL databases.

Stay away from foreign keys, keep it fast and simple. Define your data structures well in advance. Try to model your data structures based on your system’s vision; based on where it’s going and not based solely on what you currently need it to do. This will help you avoid drastic changes to your database after your system is launched. Populate the database with fake data and run tests. PostgreSQL allows you to create Views from multiple tables. Try to create those views and make sure you can easily create useful views from multiple tables. Run an Explain on those view queries to make sure you created your indexes correctly. Make sure it’s fast!

See more
Matthew Rothstein
Recommends
on
PostgreSQLPostgreSQL

Any of those three databases are going to be efficient, scalable, and reliable in the long term if you configure and use them correctly. They all also have solid hosting solutions.

All things being equal, I would agree with other posters that Postgres is my preference among the three, but there are caveats.

MongoDB and MySQL have better support for mutli-region replication in your big three cloud environments. Azure recently bought Citus Data, which was a best-in-class Postgres replication solution, so they might be the only one I trust to provide cross-region replication at the moment.

If you have a single region deployment and are on AWS, I can't recommend Aurora Postgres highly enough. It's a very good implementation and extremely performant.

See more
Josh Dzielak
Co-Founder & CTO at Orbit · | 4 upvotes · 912.5K views
Recommends
on
PostgreSQLPostgreSQL

I'll second another piece of advice. Postgresql's JSON columns are a dream when it comes to productivity and I use them frequently with our Rails application. In these cases, no migration is required to change schema. We store payloads with dozens or hundreds of keys and performance has not been an issue. We also have a lot of relational tables, so the joins we get with SQL are very important to us and hard to replicate with a NoQL solution.

See more
Danilo Kaltner
Recommends
on
PostgreSQLPostgreSQL

That really depends of where do you see you application in the long run. On any application, any of those choices are excellent. You could argue about good support on JSON binaries, but even MySQL has an excellent support for that on the latest versions.

On the long run, when your application gets hundreds of thousands of requests per second, you might start thinking about how many inputs you will have in the database compared to the outputs. PostgresSQL it’s excellent at giving you outputs, but table corruption can happen when you start receiving this massive number of inputs (Which was the reason Uber switched from Postgres to MySQL)

On our OPS Platform at CTO.ai , we decided to use Postgres, because we need a reliable and agile way to send the output to our users, so that was out best choice in the long run for our product.

See more
Needs advice
on
MongoDBMongoDB
and
PostgreSQLPostgreSQL

I am one of those who believes that MongoDB can be used for everything, this thanks to the advertising of MongoDB.

We are creating an e-commerce platform, we know that it has many relationships, but with MongoDB we can avoid some, but in the end, some relationships have to exist.

A single developer to create two native applications in Flutter, a web application with React, create the backend with multiple microservices hosted with Google Cloud Run. PostgreSQL can be heavy because it should be used with an ORM, on the contrary, with MongoDB you can avoid some relationships and avoid ORM / ODM.

We need advice from someone who has the experience and has had to choose between these two databases for an e-commerce site.

See more
Replies (4)
Recommends
on
PostgreSQLPostgreSQL

The real question here is not about the technology but rather your real needs and your data. Do you need to manage data that has core concepts and relations ? (such as a family, with parents and children) or do you need to manage a basic collection of similar data (such as blog entries)? PostgreSQL is definitely a relational database for managing entities and their relationships whereas MongoDB (I may be strongly opinionated here ;-) ) is more targeted at managing collection of entities (such as the blog entries). For an e-commerce site (with some products, products categories, user ratings and comments, prices, bundles...) I would go for PostgreSQL as it will support/guide you in creating a structured data set with all your products, organized in categories and with user ratings/comments attached to them. HTH

See more
Valeriy Bykanov
Founder, CEO at X1 Group · | 3 upvotes · 635.2K views
Recommends
at

Had exactly the same question when selecting data storage for our new product. Not e-commerce though, rather interactive and content-focused HR SaaS for SME.

The key arguments for PostgreSQL

  • It gives you the opportunity to use relationships where you really need it and just go with key-value tables where you don't.

  • With Jsonb datatype you can store documents/objects/arrays as JSON then use JSON elements in queries and even indexes.

  • There are more tools/integrations working with PostgreSQL which you can use out of the box, e.g. Hasura

See more
Damián Gil
Advisor at Empresa En Crecimiento · | 3 upvotes · 633.7K views
Recommends
on
MongoDBMongoDB

I am in your spot, exactly. A few months ago, I had decided to use Postgres because since its version 9 it showed a lot of progress for being a high-availability database. However, frankly, I didn't want to model statically all data, since I have several distinct schemas (like for different product types) and I wanted some flexibility to add or remove as I saw fit. One of the main challenges with analyzing a NoSQL database being familiar in the SQL ways, is that it's easy to look for "analogies" for what makes SQL useful, like relationship enforcing, transactions and the cascading effect on deletes, updates and inserts, and that limit your vision a lot when analyzing a tool like Mongo, especially in a micro-services pattern. Now-a-days, I really found my solution in Mongo. Not just because of it being NoSQL, but because all of the support I find in the NodeJS community through packages and utilities that make it dead easy to use it for several use-cases. Whatever Postgres offers, Mongo does it a little easier and better, like text search and geo-queries. What you need to see is to model your data in a way that makes sense with Mongo. For instance, I've got a User service that has all auth related information of a user. But then, I have the same user in the Profile service, with the same id, but totally different fields. You have two de facto ways to connect data, by reference and embedding, which in Ecommerce, both have big uses. Like using references to relate a User to a Profile, and an embed to relate a Product to an Order. There's even a third, albeit a little more "manual" implementation here, the graph relationship in which you can model data, in which you can easily model event-driven documents, like a Purchase that goes from "a customer" to "a store", which you can later use for much easier and deep analytics than with the classical SQL stance. MariaDB has it readily available, and also has many improvements over MySQL and Postgres, especially for NoSQL features and scalability. Sadly it is just seen as a MySQL clone, but it offers more than that (although its documentation could be improved). Using Mongo in a micro-service environment is even better because your models can be smaller, meaning less burden on relationships, although you do compensate with a bit of duplication, but a well-designed schema will have minimal impact on that. Whatever tool might do the job, but I want to cheer on the newer generation. Hope it helps.

See more
Needs advice
on
MongoDBMongoDBMySQLMySQL
and
PostgreSQLPostgreSQL

Hello,

I am trying to design an online ordering app similar to Doordash or Uber Eats. I'm having a hard time trying to finalise on what database (or mixture of databases) to use. I'm leaning towards using a relational database like MySQL or PostgreSQL. But, when the application grows, I don't want to join on 20 tables to get a data. Any help would be greatly appreciated. Thank you for your time.

See more
Replies (2)
Rupen Makhecha
Recommends
on
MySQLMySQL

Hello Suhas , We build our product www.voilacabs.com which is in the same lines as yours but we have used a combination of Mysql and MongoDB. When using MySQL, i would recommend doing the following: 1. Use Mysql only for storage only and for realtime updates we recommend MongoDB. 2. Don't try to Join more than 3 tables. ( the moment you reach 3 join stop there and try to un-normalized database. 3. Never or very rarely use Auto-increments. ( we recommend using UUIDS ) . Use UUIDS always for Auto increments for MYSQL. If you using Postgre SQL then i would suggest you to please check this https://instagram-engineering.com/sharding-ids-at-instagram-1cf5a71e5a5c There is a stored procedure that generated unique keys instead of auto-increment keys and that will help you sharding or clustering database without sync errors. 4. Also For MongoDB if you can put a layer of REDIS Cache then that will boost your api performance under large loads. 5. Use Node.js programing language as that function asynchronously .

Let me know if you still need any suggestion's . Thanks & Regards Rupen Makhecha CTO @ Voila Cab's www.voilacabs.com

See more
Rafey Iqbal Rahman
Recommends
on
MySQLMySQL
at

I would recommend a mixture of MySQL and MongoDB. Using MongoDB for the Content Distribution Network (CDN) will make it easy to store high volume incoming data. MySQL is recommended to be used for business logic. PostgreSQL is not recommended since you will be faced with inefficient database replication features and constant migration from one PostgreSQL version to another.

See more
Needs advice
on
IndexedDBIndexedDBMongoDBMongoDB
and
PostgreSQLPostgreSQL

I'm currently developing an app that ranks trending stuff ( such as games, memes or movies, etc. ) or events in a particular country or region. Here are the specs: My app does not require registration and requires cookies and localStorage to track users. Users can add new entries to each trending category provided that their country of origin is recorded in cookies. If each category contains more than 100 items then the oldest items get deleted. The question is: what kind of database should I use for managing this app? Thanks in advance

See more
Replies (1)
Recommends
on
MongoDBMongoDB

I think your best and cheapest choice is going to be MongoDB, Although Postgres is probably going to be the more scaleable approach, you likely have a good idea of how you want to present your data, and the app seems small enough that you shouldn't need to worry about scaling issues. It also sounds like your app can grow in a linear capacity based on the number of users, and the amount of data, which is the perfect use-case for noSQL databases (linear, predictable scaling).

Correct me if I have any of these assumptions wrong. 1. You're looking to have a relatively high-read with a lower write volume 2. Your app is essentially a list of objects that can belong to a category 3. users can create objects in this list.

I think Mongo is going to be what you're looking for on the following basis: 1. you absolutely need a database that is shared by all users of your app, therefor IndexedDB is out of the question. 2. You have semi-structured data 3. you probably want the cheapest solution.

I think Postgres is wrong for the following reasons: 1. your app is pretty simple in concept, SQL databases will add unnecessary complexity to your system, either through ORMs or SQL queries. (use an ORM if you go with SQL) 2. Hosting SQL databases for production is not cheap! the cheapest solution I know of for Postgres is ElephantSQL. It provides 20MB for free with 5 concurrent connections, you should be okay to manage these limitations if you decide to go Postgres in the end. Whereas mongoDB Atlas has some great free-tier options.

Although your data might be easier to model in Postgres, you can certainly model your data as a single list of items that have a category attached.

I don't want to officially recommend another tool, but you should really checkout prisma, firebase, amplify, or Azure App Services for this app! Just go completely backend-less [Firebase] https://firebase.google.com/ [Amplify] https://aws.amazon.com/amplify/ [Prisma] https://www.prisma.io/ [Azure App Services] https://azure.microsoft.com/en-us/services/app-service/?v=18.51

See more
Decisions about MongoDB and TiDB
Sergey Rodovinsky

At Pushnami we were looking at several alternative databases that would support following architectural requirements: - very quick prototyping for an unknown domain - ability to support large amounts of data - native ability to replicate and fail over - full stack approach for Node.js development After careful consideration MongoDB came on top, and 3 years later we are still very happy with that decision. Currently we keep almost 2TB of data in our cluster, and start thinking about sharding.

See more
Gabriel Pa

After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.

Here's why you should not use Couchbase

Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types

N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.

Community support I posted several problems on the forum and I never once received a useful answer

Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great

Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.

Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.

Minimum requirements The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600. We achieved better performance using a $16 MongoDB instance on the Mongo Atlas Cloud

writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.

Couchbase UI The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code

Consumes too much RAM Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB

Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.

See more
Omran Jamal
CTO & Co-founder at Bonton Connect · | 5 upvotes · 558.7K views

We actually use both Mongo and SQL databases in production. Mongo excels in both speed and developer friendliness when it comes to geospatial data and queries on the geospatial data, but we also like ACID compliance hence most of our other data (except on-site logs) are stored in a SQL Database (MariaDB for now)

See more
Kyle Harrison
Web Application Developer at Fortinet · | 11 upvotes · 983.6K views

MySQL has a lot of strengths working for it. It's simple and easy to set up and use. It's JSON engine is also really good these days. Mongo is also simple to setup and use, and it's speed as a document-object storage engine is first class.

Where Postgres has both beat is in it's combining of all of the features that make both MySQL and Mongo great, while adding on enterprise grade level scalability and replication. It's Postgres' stability and robustness, while still fulfilling the roles of it's contemporaries extremely well that edge Postgre for me.

See more

When I was new with web development, I was using PHP for backend and MySQL for database. But after improving my JS skills, I chosen Node.js. Because of too many reasons including npm, express, community, fast coding and etc. MongoDB is so good for using with Node.js. If your JS skills are enough good, I recommend to migrate to Node.js and MongoDB.

See more
Chose
MongoDBMongoDB
over
MySQLMySQL

My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.

See more

We used Mongo for the first iterations of our app, but the relational nature of our data was an awkward fit for a database that is not relational. We sorely lacked relational database integrity features that needed to be done on the application side (poorly) and it was a huge relief when we managed to port our application over to Postgres, which performs great and never gives us trouble, while having very user friendly extensions like JSON and PubSub that made the transition easy.

See more

We wanted a JSON datastore that could save the state of our bioinformatics visualizations without destructive normalization. As a leading NoSQL data storage technology, MongoDB has been a perfect fit for our needs. Plus it's open source, and has an enterprise SLA scale-out path, with support of hosted solutions like Atlas. Mongo has been an absolute champ. So much so that SQL and Oracle have begun shipping JSON column types as a new feature for their databases. And when Fast Healthcare Interoperability Resources (FHIR) announced support for JSON, we basically had our FHIR datalake technology.

See more

In the field of bioinformatics, we regularly work with hierarchical and unstructured document data. Unstructured text data from PDFs, image data from radiographs, phylogenetic trees and cladograms, network graphs, streaming ECG data... none of it fits into a traditional SQL database particularly well. As such, we prefer to use document oriented databases.

MongoDB is probably the oldest component in our stack besides Javascript, having been in it for over 5 years. At the time, we were looking for a technology that could simply cache our data visualization state (stored in JSON) in a database as-is without any destructive normalization. MongoDB was the perfect tool; and has been exceeding expectations ever since.

Trivia fact: some of the earliest electronic medical records (EMRs) used a document oriented database called MUMPS as early as the 1960s, prior to the invention of SQL. MUMPS is still in use today in systems like Epic and VistA, and stores upwards of 40% of all medical records at hospitals. So, we saw MongoDB as something as a 21st century version of the MUMPS database.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of MongoDB
Pros of TiDB
  • 828
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 255
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Schemaless
  • 3
    Aggregation Framework
  • 3
    Drivers support is good
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
  • 9
    Open source
  • 7
    Horizontal scalability
  • 5
    Strong ACID
  • 3
    HTAP
  • 2
    Mysql Compatibility
  • 2
    Enterprise Support

Sign up to add or upvote prosMake informed product decisions

Cons of MongoDB
Cons of TiDB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language
    Be the first to leave a con

    Sign up to add or upvote consMake informed product decisions

    What is MongoDB?

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

    What is TiDB?

    Inspired by the design of Google F1, TiDB supports the best features of both traditional RDBMS and NoSQL.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use MongoDB?
    What companies use TiDB?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with MongoDB?
    What tools integrate with TiDB?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Dec 8 2020 at 5:50PM

    DigitalOcean

    GitHubMySQLPostgreSQL+11
    2
    2451
    JavaScriptGitHubNode.js+29
    14
    13650
    GitGitHubDocker+34
    29
    42711
    GitGitHubSlack+30
    27
    18713
    What are some alternatives to MongoDB and TiDB?
    Amazon DynamoDB
    With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.
    Couchbase
    Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands.
    MySQL
    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
    PostgreSQL
    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.
    Cassandra
    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
    See all alternatives