TensorFlow聽vs聽Theano

Need advice about which tool to choose?Ask the StackShare community!

TensorFlow

2.3K
2.5K
+ 1
75
Theano

26
47
+ 1
0
Add tool

TensorFlow vs Theano: What are the differences?

What is TensorFlow? Open Source Software Library for Machine Intelligence. TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

What is Theano? Define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray). Using Theano it is possible to attain speeds rivaling hand-crafted C impleme.

TensorFlow and Theano can be categorized as "Machine Learning" tools.

Theano is an open source tool with 8.83K GitHub stars and 2.49K GitHub forks. Here's a link to Theano's open source repository on GitHub.

Decisions about TensorFlow and Theano

Pytorch is a famous tool in the realm of machine learning and it has already set up its own ecosystem. Tutorial documentation is really detailed on the official website. It can help us to create our deep learning model and allowed us to use GPU as the hardware support.

I have plenty of projects based on Pytorch and I am familiar with building deep learning models with this tool. I have used TensorFlow too but it is not dynamic. Tensorflow works on a static graph concept that means the user first has to define the computation graph of the model and then run the ML model, whereas PyTorch believes in a dynamic graph that allows defining/manipulating the graph on the go. PyTorch offers an advantage with its dynamic nature of creating graphs.

See more
Xi Huang
Developer at University of Toronto | 8 upvotes 路 33.6K views

For data analysis, we choose a Python-based framework because of Python's simplicity as well as its large community and available supporting tools. We choose PyTorch over TensorFlow for our machine learning library because it has a flatter learning curve and it is easy to debug, in addition to the fact that our team has some existing experience with PyTorch. Numpy is used for data processing because of its user-friendliness, efficiency, and integration with other tools we have chosen. Finally, we decide to include Anaconda in our dev process because of its simple setup process to provide sufficient data science environment for our purposes. The trained model then gets deployed to the back end as a pickle.

See more
Pros of TensorFlow
Pros of Theano
  • 23
    High Performance
  • 16
    Connect Research and Production
  • 13
    Deep Flexibility
  • 9
    Auto-Differentiation
  • 9
    True Portability
  • 2
    Easy to use
  • 2
    High level abstraction
  • 1
    Powerful
    Be the first to leave a pro

    Sign up to add or upvote prosMake informed product decisions

    Cons of TensorFlow
    Cons of Theano
    • 8
      Hard
    • 5
      Hard to debug
    • 1
      Documentation not very helpful
      Be the first to leave a con

      Sign up to add or upvote consMake informed product decisions

      What is TensorFlow?

      TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

      What is Theano?

      Theano is a Python library that lets you to define, optimize, and evaluate mathematical expressions, especially ones with multi-dimensional arrays (numpy.ndarray).

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use TensorFlow?
      What companies use Theano?

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with TensorFlow?
      What tools integrate with Theano?

      Sign up to get full access to all the tool integrationsMake informed product decisions

      Blog Posts

      PythonDockerAmazon S3+14
      11
      1883
      Dec 4 2019 at 8:01PM
      https://img.stackshare.io/stack/519120/default_d8fbac59cb4c75cc8da7062d0dc1d02daa76fa62.png logo

      Pinterest

      JenkinsKubernetesTensorFlow+4
      5
      2797
      What are some alternatives to TensorFlow and Theano?
      PyTorch
      PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.
      OpenCV
      OpenCV was designed for computational efficiency and with a strong focus on real-time applications. Written in optimized C/C++, the library can take advantage of multi-core processing. Enabled with OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute platform.
      Keras
      Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/
      Apache Spark
      Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
      MXNet
      A deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, it contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly.
      See all alternatives
      Interest over time
      News about Theano
      More news