What is Amazon SQS?

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.
Amazon SQS is a tool in the Message Queue category of a tech stack.

Who uses Amazon SQS?

Companies
904 companies reportedly use Amazon SQS in their tech stacks, including Pinterest, Amazon, and CRED.

Developers
1239 developers on StackShare have stated that they use Amazon SQS.

Amazon SQS Integrations

Apache NiFi, MongoDB Stitch, KrakenD, LocalStack, and StreamSets are some of the popular tools that integrate with Amazon SQS. Here's a list of all 26 tools that integrate with Amazon SQS.
Pros of Amazon SQS
62
Easy to use, reliable
40
Low cost
28
Simple
14
Doesn't need to maintain it
8
It is Serverless
4
Has a max message size (currently 256K)
3
Triggers Lambda
3
Easy to configure with Terraform
3
Delayed delivery upto 15 mins only
3
Delayed delivery upto 12 hours
1
JMS compliant
1
Support for retry and dead letter queue
1
D
Decisions about Amazon SQS

Here are some stack decisions, common use cases and reviews by companies and developers who chose Amazon SQS in their tech stack.

Pulkit Sapra
Needs advice
on
Amazon SQSAmazon SQSKubernetesKubernetes
and
RabbitMQRabbitMQ

Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

See more
Meili Triantafyllidi
Software engineer at Digital Science · | 6 upvotes · 468.8K views
Needs advice
on
Amazon SQSAmazon SQSRabbitMQRabbitMQ
and
ZeroMQZeroMQ

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

See more
MITHIRIDI PRASANTH
Software Engineer at LightMetrics · | 4 upvotes · 282.9K views
Needs advice
on
Amazon MQAmazon MQ
and
Amazon SQSAmazon SQS

I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.

Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.

See more
Simon Bettison
Managing Director at Bettison.org Limited · | 8 upvotes · 791.1K views
Shared insights
at

In 2012 we made the very difficult decision to entirely re-engineer our existing monolithic LAMP application from the ground up in order to address some growing concerns about it's long term viability as a platform.

Full application re-write is almost always never the answer, because of the risks involved. However the situation warranted drastic action as it was clear that the existing product was going to face severe scaling issues. We felt it better address these sooner rather than later and also take the opportunity to improve the international architecture and also to refactor the database in. order that it better matched the changes in core functionality.

PostgreSQL was chosen for its reputation as being solid ACID compliant database backend, it was available as an offering AWS RDS service which reduced the management overhead of us having to configure it ourselves. In order to reduce read load on the primary database we implemented an Elasticsearch layer for fast and scalable search operations. Synchronisation of these indexes was to be achieved through the use of Sidekiq's Redis based background workers on Amazon ElastiCache. Again the AWS solution here looked to be an easy way to keep our involvement in managing this part of the platform at a minimum. Allowing us to focus on our core business.

Rails ls was chosen for its ability to quickly get core functionality up and running, its MVC architecture and also its focus on Test Driven Development using RSpec and Selenium with Travis CI providing continual integration. We also liked Ruby for its terse, clean and elegant syntax. Though YMMV on that one!

Unicorn was chosen for its continual deployment and reputation as a reliable application server, nginx for its reputation as a fast and stable reverse-proxy. We also took advantage of the Amazon CloudFront CDN here to further improve performance by caching static assets globally.

We tried to strike a balance between having control over management and configuration of our core application with the convenience of being able to leverage AWS hosted services for ancillary functions (Amazon SES , Amazon SQS Amazon Route 53 all hosted securely inside Amazon VPC of course!).

Whilst there is some compromise here with potential vendor lock in, the tasks being performed by these ancillary services are no particularly specialised which should mitigate this risk. Furthermore we have already containerised the stack in our development using Docker environment, and looking to how best to bring this into production - potentially using Amazon EC2 Container Service

See more
Praveen Mooli
Engineering Manager at Taylor and Francis · | 19 upvotes · 4M views

We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

To build #Webapps we decided to use Angular 2 with RxJS

#Devops - GitHub , Travis CI , Terraform , Docker , Serverless

See more

Blog Posts

GitHubPythonNode.js+47
55
72627
GitGitHubSlack+30
27
18575
GitHubDockerAmazon EC2+23
12
6593
GitHubPythonSlack+25
7
3200

Amazon SQS's Features

  • A queue can be created in any region.
  • The message payload can contain up to 256KB of text in any format. Each 64KB ‘chunk’ of payload is billed as 1 request. For example, a single API call with a 256KB payload will be billed as four requests.
  • Messages can be sent, received or deleted in batches of up to 10 messages or 256KB. Batches cost the same amount as single messages, meaning SQS can be even more cost effective for customers that use batching.
  • Long polling reduces extraneous polling to help you minimize cost while receiving new messages as quickly as possible. When your queue is empty, long-poll requests wait up to 20 seconds for the next message to arrive. Long poll requests cost the same amount as regular requests.
  • Messages can be retained in queues for up to 14 days.
  • Messages can be sent and read simultaneously.
  • Developers can get started with Amazon SQS by using only five APIs: CreateQueue, SendMessage, ReceiveMessage, ChangeMessageVisibility, and DeleteMessage. Additional APIs are available to provide advanced functionality.

Amazon SQS Alternatives & Comparisons

What are some alternatives to Amazon SQS?
Amazon MQ
Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud.
Kafka
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.
ActiveMQ
Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.
Amazon SNS
Amazon Simple Notification Service makes it simple and cost-effective to push to mobile devices such as iPhone, iPad, Android, Kindle Fire, and internet connected smart devices, as well as pushing to other distributed services. Besides pushing cloud notifications directly to mobile devices, SNS can also deliver notifications by SMS text message or email, to Simple Queue Service (SQS) queues, or to any HTTP endpoint.
See all alternatives

Amazon SQS's Followers
1971 developers follow Amazon SQS to keep up with related blogs and decisions.