Alternatives to Blazegraph logo

Alternatives to Blazegraph

Neo4j, JanusGraph, OrientDB, MySQL, and PostgreSQL are the most popular alternatives and competitors to Blazegraph.
7
16
+ 1
3

What is Blazegraph and what are its top alternatives?

Blazegraph is a high-performance graph database engine that can process large amounts of data with high scalability and availability. It supports RDF, SPARQL, and text search, making it suitable for various applications requiring graph database capabilities. However, Blazegraph has limitations such as lack of built-in ACID transactions and limited support for complex graph query optimizations.

  1. Neo4j: Neo4j is a popular graph database management system known for its high performance, scalability, and ACID compliance. It supports Cypher query language and is suitable for various use cases, including social networks and recommendation engines. Pros include a user-friendly interface and powerful graph algorithms, while cons include its license restrictions on the community edition.

  2. Amazon Neptune: Amazon Neptune is a fully managed graph database service that is highly available and scalable. It supports both property graph and RDF graph models, making it suitable for a wide range of applications. Pros include integration with other AWS services and automatic backups, while cons include its cost compared to self-hosted solutions.

  3. TigerGraph: TigerGraph is a distributed graph database known for its high performance and scalability. It supports both real-time and offline graph analytics, making it suitable for complex graph query processing. Pros include its parallel query execution and support for custom graph algorithms, while cons include its complexity in setup and management.

  4. ArangoDB: ArangoDB is a multi-model database that supports graph, document, and key-value data models. It offers flexible data modeling capabilities and supports AQL (ArangoDB Query Language) for querying. Pros include its multi-model capabilities and seamless scalability, while cons include potential performance issues with complex graph queries.

  5. JanusGraph: JanusGraph is an open-source distributed graph database built for scalability and flexibility. It supports various storage backends such as Apache Cassandra and HBase, making it suitable for large-scale graph processing. Pros include its extensibility through custom plugins and high availability, while cons include its steep learning curve for new users.

  6. Dgraph: Dgraph is a scalable, distributed graph database designed for real-time queries and distributed transactions. It supports GraphQL+- query language for flexible data retrieval and manipulation. Pros include its horizontal scalability and support for sharding, while cons include limited tooling compared to other graph databases.

  7. OrientDB: OrientDB is a multi-model database that combines the power of graph and document databases. It offers support for ACID transactions, distributed architecture, and SQL-like query language for easier data manipulation. Pros include its flexible data modeling capabilities and polyglot persistence support, while cons include potential complexity in configuration and optimization.

  8. AllegroGraph: AllegroGraph is a high-performance, semantic graph database that supports RDF and SPARQL standards. It is known for its advanced reasoning and inferencing capabilities, making it suitable for knowledge graph applications. Pros include its support for semantic web technologies and scalability, while cons include its higher cost compared to other alternatives.

  9. Stardog: Stardog is a knowledge graph platform that combines graph database capabilities with enterprise-grade data integration and virtualization. It supports SPARQL query language and reasoning for complex data inference. Pros include its schema evolution capabilities and scalable architecture, while cons include its learning curve for new users.

  10. Cayley: Cayley is an open-source graph database that supports multiple backend storage options and query languages. It is designed for simplicity and ease of use, making it suitable for small to medium-scale graph data processing. Pros include its lightweight footprint and support for multiple data formats, while cons include its limitations in scalability for large datasets.

Top Alternatives to Blazegraph

  • Neo4j
    Neo4j

    Neo4j stores data in nodes connected by directed, typed relationships with properties on both, also known as a Property Graph. It is a high performance graph store with all the features expected of a mature and robust database, like a friendly query language and ACID transactions. ...

  • JanusGraph
    JanusGraph

    It is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. It is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time. ...

  • OrientDB
    OrientDB

    It is an open source NoSQL database management system written in Java. It is a Multi-model database, supporting graph, document, key/value, and object models, but the relationships are managed as in graph databases with direct connections between records. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • Amazon S3
    Amazon S3

    Amazon Simple Storage Service provides a fully redundant data storage infrastructure for storing and retrieving any amount of data, at any time, from anywhere on the web ...

Blazegraph alternatives & related posts

Neo4j logo

Neo4j

1.2K
351
The world’s leading Graph Database
1.2K
351
PROS OF NEO4J
  • 69
    Cypher – graph query language
  • 61
    Great graphdb
  • 33
    Open source
  • 31
    Rest api
  • 27
    High-Performance Native API
  • 23
    ACID
  • 21
    Easy setup
  • 17
    Great support
  • 11
    Clustering
  • 9
    Hot Backups
  • 8
    Great Web Admin UI
  • 7
    Powerful, flexible data model
  • 7
    Mature
  • 6
    Embeddable
  • 5
    Easy to Use and Model
  • 4
    Highly-available
  • 4
    Best Graphdb
  • 2
    It's awesome, I wanted to try it
  • 2
    Great onboarding process
  • 2
    Great query language and built in data browser
  • 2
    Used by Crunchbase
CONS OF NEO4J
  • 9
    Comparably slow
  • 4
    Can't store a vertex as JSON
  • 1
    Doesn't have a managed cloud service at low cost

related Neo4j posts

Shared insights
on
Neo4jNeo4jKafkaKafkaMySQLMySQL

Hello Stackshare. I'm currently doing some research on real-time reporting and analytics architectures. We have a use case where 1million+ records of users, 4million+ activities, and messages that we want to report against. The start was to present it directly from MySQL, which didn't go well and puts a heavy load on the database. Anybody can suggest something where we feed the data and can report in realtime? Read some articles about ElasticSearch and Kafka https://medium.com/@D11Engg/building-scalable-real-time-analytics-alerting-and-anomaly-detection-architecture-at-dream11-e20edec91d33 EDIT: also considering Neo4j

See more
Stephen Gheysens
Lead Solutions Engineer at Inscribe · | 7 upvotes · 485.8K views

Google Maps lets "property owners and their authorized representatives" upload indoor maps, but this appears to lack navigation ("wayfinding").

MappedIn is a platform and has SDKs for building indoor mapping experiences (https://www.mappedin.com/) and ESRI ArcGIS also offers some indoor mapping tools (https://www.esri.com/en-us/arcgis/indoor-gis/overview). Finally, there used to be a company called LocusLabs that is now a part of Atrius and they were often integrated into airlines' apps to provide airport maps with wayfinding (https://atrius.com/solutions/personal-experiences/personal-wayfinder/).

I previously worked at Mapbox and while I believe that it's a great platform for building map-based experiences, they don't have any simple solutions for indoor wayfinding. If I were doing this for fun as a side-project and prioritized saving money over saving time, here is what I would do:

  • Create a graph-based dataset representing the walking paths around your university, where nodes/vertexes represent the intersections of paths, and edges represent paths (literally paths outside, hallways, short path segments that represent entering rooms). You could store this in a hosted graph-based database like Neo4j, Amazon Neptune , or Azure Cosmos DB (with its Gremlin API) and use built-in "shortest path" queries, or deploy a PostgreSQL service with pgRouting.

  • Add two properties to each edge: one property for the distance between its nodes (libraries like @turf/helpers will have a distance function if you have the latitude & longitude of each node), and another property estimating the walking time (based on the distance). Once you have these values saved in a graph-based format, you should be able to easily query and find the data representation of paths between two points.

  • At this point, you'd have the routing problem solved and it would come down to building a UI. Mapbox arguably leads the industry in developer tools for custom map experiences. You could convert your nodes/edges to GeoJSON, then either upload to Mapbox and create a Tileset to visualize the paths, or add the GeoJSON to the map on the fly.

*You might be able to use open source routing tools like OSRM (https://github.com/Project-OSRM/osrm-backend/issues/6257) or Graphhopper (instead of a custom graph database implementation), but it would likely be more involved to maintain these services.

See more
JanusGraph logo

JanusGraph

42
0
Open-source, distributed graph database
42
0
PROS OF JANUSGRAPH
    Be the first to leave a pro
    CONS OF JANUSGRAPH
      Be the first to leave a con

      related JanusGraph posts

      OrientDB logo

      OrientDB

      75
      14
      An open source NoSQL database management system
      75
      14
      PROS OF ORIENTDB
      • 4
        Great graphdb
      • 2
        Great support
      • 2
        Open source
      • 1
        Multi-Model/Paradigm
      • 1
        ACID
      • 1
        Highly-available
      • 1
        Performance
      • 1
        Embeddable
      • 1
        Rest api
      CONS OF ORIENTDB
      • 4
        Unstable

      related OrientDB posts

      We have an in-house build experiment management system. We produce samples as input to the next step, which then could produce 1 sample(1-1) and many samples (1 - many). There are many steps like this. So far, we are tracking genealogy (limited tracking) in the MySQL database, which is becoming hard to trace back to the original material or sample(I can give more details if required). So, we are considering a Graph database. I am requesting advice from the experts.

      1. Is a graph database the right choice, or can we manage with RDBMS?
      2. If RDBMS, which RDMS, which feature, or which approach could make this manageable or sustainable
      3. If Graph database(Neo4j, OrientDB, Azure Cosmos DB, Amazon Neptune, ArangoDB), which one is good, and what are the best practices?

      I am sorry that this might be a loaded question.

      See more
      MySQL logo

      MySQL

      128.1K
      3.8K
      The world's most popular open source database
      128.1K
      3.8K
      PROS OF MYSQL
      • 800
        Sql
      • 679
        Free
      • 562
        Easy
      • 528
        Widely used
      • 490
        Open source
      • 180
        High availability
      • 160
        Cross-platform support
      • 104
        Great community
      • 79
        Secure
      • 75
        Full-text indexing and searching
      • 26
        Fast, open, available
      • 16
        Reliable
      • 16
        SSL support
      • 15
        Robust
      • 9
        Enterprise Version
      • 7
        Easy to set up on all platforms
      • 3
        NoSQL access to JSON data type
      • 1
        Relational database
      • 1
        Easy, light, scalable
      • 1
        Sequel Pro (best SQL GUI)
      • 1
        Replica Support
      CONS OF MYSQL
      • 16
        Owned by a company with their own agenda
      • 3
        Can't roll back schema changes

      related MySQL posts

      Nick Rockwell
      SVP, Engineering at Fastly · | 46 upvotes · 4.4M views

      When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?

      So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.

      React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.

      Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.

      See more

      Hello, I am building a website for a school that's used by students to find Zoom meeting links, view their marks, and check course materials. It is also used by the teachers to put the meeting links, students' marks, and course materials.

      I created a similar website using HTML, CSS, PHP, and MySQL. Now I want to implement this project using some frameworks: Next.js, ExpressJS and use PostgreSQL instead of MYSQL

      I want to have some advice on whether these are enough to implement my project.

      See more
      PostgreSQL logo

      PostgreSQL

      100.3K
      3.5K
      A powerful, open source object-relational database system
      100.3K
      3.5K
      PROS OF POSTGRESQL
      • 764
        Relational database
      • 510
        High availability
      • 439
        Enterprise class database
      • 383
        Sql
      • 304
        Sql + nosql
      • 173
        Great community
      • 147
        Easy to setup
      • 131
        Heroku
      • 130
        Secure by default
      • 113
        Postgis
      • 50
        Supports Key-Value
      • 48
        Great JSON support
      • 34
        Cross platform
      • 33
        Extensible
      • 28
        Replication
      • 26
        Triggers
      • 23
        Multiversion concurrency control
      • 23
        Rollback
      • 21
        Open source
      • 18
        Heroku Add-on
      • 17
        Stable, Simple and Good Performance
      • 15
        Powerful
      • 13
        Lets be serious, what other SQL DB would you go for?
      • 11
        Good documentation
      • 9
        Scalable
      • 8
        Reliable
      • 8
        Intelligent optimizer
      • 8
        Free
      • 7
        Transactional DDL
      • 7
        Modern
      • 6
        One stop solution for all things sql no matter the os
      • 5
        Relational database with MVCC
      • 5
        Faster Development
      • 4
        Full-Text Search
      • 4
        Developer friendly
      • 3
        Open-source
      • 3
        search
      • 3
        Great DB for Transactional system or Application
      • 3
        Free version
      • 3
        Excellent source code
      • 3
        Relational datanbase
      • 2
        Text
      • 2
        Full-text
      • 1
        Can handle up to petabytes worth of size
      • 1
        Multiple procedural languages supported
      • 1
        Composability
      • 0
        Native
      CONS OF POSTGRESQL
      • 10
        Table/index bloatings

      related PostgreSQL posts

      Hello, I am building a website for a school that's used by students to find Zoom meeting links, view their marks, and check course materials. It is also used by the teachers to put the meeting links, students' marks, and course materials.

      I created a similar website using HTML, CSS, PHP, and MySQL. Now I want to implement this project using some frameworks: Next.js, ExpressJS and use PostgreSQL instead of MYSQL

      I want to have some advice on whether these are enough to implement my project.

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 12.7M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      MongoDB logo

      MongoDB

      95K
      4.1K
      The database for giant ideas
      95K
      4.1K
      PROS OF MONGODB
      • 829
        Document-oriented storage
      • 594
        No sql
      • 554
        Ease of use
      • 465
        Fast
      • 410
        High performance
      • 255
        Free
      • 219
        Open source
      • 180
        Flexible
      • 145
        Replication & high availability
      • 112
        Easy to maintain
      • 42
        Querying
      • 39
        Easy scalability
      • 38
        Auto-sharding
      • 37
        High availability
      • 31
        Map/reduce
      • 27
        Document database
      • 25
        Easy setup
      • 25
        Full index support
      • 16
        Reliable
      • 15
        Fast in-place updates
      • 14
        Agile programming, flexible, fast
      • 12
        No database migrations
      • 8
        Easy integration with Node.Js
      • 8
        Enterprise
      • 6
        Enterprise Support
      • 5
        Great NoSQL DB
      • 4
        Support for many languages through different drivers
      • 3
        Schemaless
      • 3
        Aggregation Framework
      • 3
        Drivers support is good
      • 2
        Fast
      • 2
        Managed service
      • 2
        Easy to Scale
      • 2
        Awesome
      • 2
        Consistent
      • 1
        Good GUI
      • 1
        Acid Compliant
      CONS OF MONGODB
      • 6
        Very slowly for connected models that require joins
      • 3
        Not acid compliant
      • 2
        Proprietary query language

      related MongoDB posts

      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more
      Robert Zuber

      We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

      As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

      When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

      See more
      Redis logo

      Redis

      60.6K
      3.9K
      Open source (BSD licensed), in-memory data structure store
      60.6K
      3.9K
      PROS OF REDIS
      • 887
        Performance
      • 542
        Super fast
      • 514
        Ease of use
      • 444
        In-memory cache
      • 324
        Advanced key-value cache
      • 194
        Open source
      • 182
        Easy to deploy
      • 165
        Stable
      • 156
        Free
      • 121
        Fast
      • 42
        High-Performance
      • 40
        High Availability
      • 35
        Data Structures
      • 32
        Very Scalable
      • 24
        Replication
      • 23
        Pub/Sub
      • 22
        Great community
      • 19
        "NoSQL" key-value data store
      • 16
        Hashes
      • 13
        Sets
      • 11
        Sorted Sets
      • 10
        Lists
      • 10
        NoSQL
      • 9
        Async replication
      • 9
        BSD licensed
      • 8
        Integrates super easy with Sidekiq for Rails background
      • 8
        Bitmaps
      • 7
        Open Source
      • 7
        Keys with a limited time-to-live
      • 6
        Lua scripting
      • 6
        Strings
      • 5
        Awesomeness for Free
      • 5
        Hyperloglogs
      • 4
        Runs server side LUA
      • 4
        Transactions
      • 4
        Networked
      • 4
        Outstanding performance
      • 4
        Feature Rich
      • 4
        Written in ANSI C
      • 4
        LRU eviction of keys
      • 3
        Data structure server
      • 3
        Performance & ease of use
      • 2
        Temporarily kept on disk
      • 2
        Dont save data if no subscribers are found
      • 2
        Automatic failover
      • 2
        Easy to use
      • 2
        Scalable
      • 2
        Channels concept
      • 2
        Object [key/value] size each 500 MB
      • 2
        Existing Laravel Integration
      • 2
        Simple
      CONS OF REDIS
      • 15
        Cannot query objects directly
      • 3
        No secondary indexes for non-numeric data types
      • 1
        No WAL

      related Redis posts

      Russel Werner
      Lead Engineer at StackShare · | 32 upvotes · 3.4M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 12.7M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Amazon S3 logo

      Amazon S3

      53.9K
      2K
      Store and retrieve any amount of data, at any time, from anywhere on the web
      53.9K
      2K
      PROS OF AMAZON S3
      • 590
        Reliable
      • 492
        Scalable
      • 456
        Cheap
      • 329
        Simple & easy
      • 83
        Many sdks
      • 30
        Logical
      • 13
        Easy Setup
      • 11
        REST API
      • 11
        1000+ POPs
      • 6
        Secure
      • 4
        Easy
      • 4
        Plug and play
      • 3
        Web UI for uploading files
      • 2
        Faster on response
      • 2
        Flexible
      • 2
        GDPR ready
      • 1
        Easy to use
      • 1
        Plug-gable
      • 1
        Easy integration with CloudFront
      CONS OF AMAZON S3
      • 7
        Permissions take some time to get right
      • 6
        Requires a credit card
      • 6
        Takes time/work to organize buckets & folders properly
      • 3
        Complex to set up

      related Amazon S3 posts

      Ashish Singh
      Tech Lead, Big Data Platform at Pinterest · | 38 upvotes · 3.7M views

      To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

      Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

      We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

      Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

      Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

      #BigData #AWS #DataScience #DataEngineering

      See more
      Russel Werner
      Lead Engineer at StackShare · | 32 upvotes · 3.4M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more