Alternatives to Brancher logo

Alternatives to Brancher

Pandas, NumPy, Anaconda, SciPy, and PySpark are the most popular alternatives and competitors to Brancher.
0
7
+ 1
0

What is Brancher and what are its top alternatives?

It is a user-centered Python package for differentiable probabilistic inference. It allows to design and train differentiable Bayesian models using stochastic variational inference. It is based on the deep learning framework PyTorch.
Brancher is a tool in the Data Science Tools category of a tech stack.
Brancher is an open source tool with 198 GitHub stars and 30 GitHub forks. Here鈥檚 a link to Brancher's open source repository on GitHub

Top Alternatives to Brancher

  • Pandas

    Pandas

    Flexible and powerful data analysis / manipulation library for Python, providing labeled data structures similar to R data.frame objects, statistical functions, and much more. ...

  • NumPy

    NumPy

    Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases. ...

  • Anaconda

    Anaconda

    A free and open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. Package versions are managed by the package management system conda. ...

  • SciPy

    SciPy

    Python-based ecosystem of open-source software for mathematics, science, and engineering. It contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering. ...

  • PySpark

    PySpark

    It is the collaboration of Apache Spark and Python. it is a Python API for Spark that lets you harness the simplicity of Python and the power of Apache Spark in order to tame Big Data. ...

  • Dataform

    Dataform

    Dataform helps you manage all data processes in your cloud data warehouse. Publish tables, write data tests and automate complex SQL workflows in a few minutes, so you can spend more time on analytics and less time managing infrastructure. ...

  • Pentaho Data Integration

    Pentaho Data Integration

    It enable users to ingest, blend, cleanse and prepare diverse data from any source. With visual tools to eliminate coding and complexity, It puts the best quality data at the fingertips of IT and the business. ...

  • Dask

    Dask

    It is a versatile tool that supports a variety of workloads. It is composed of two parts: Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but optimized for interactive computational workloads. Big Data collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of dynamic task schedulers. ...

Brancher alternatives & related posts

Pandas logo

Pandas

983
787
19
High-performance, easy-to-use data structures and data analysis tools for the Python programming language
983
787
+ 1
19

related Pandas posts

Server side

We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

  • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

  • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

  • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

Client side

  • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

  • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

  • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

Cache

  • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

Database

  • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

Infrastructure

  • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

Other Tools

  • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

  • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

See more
Guillaume Simler

Jupyter Anaconda Pandas IPython

A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.

The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead

See more
NumPy logo

NumPy

689
514
5
Fundamental package for scientific computing with Python
689
514
+ 1
5
CONS OF NUMPY
    No cons available

    related NumPy posts

    Server side

    We decided to use Python for our backend because it is one of the industry standard languages for data analysis and machine learning. It also has a lot of support due to its large user base.

    • Web Server: We chose Flask because we want to keep our machine learning / data analysis and the web server in the same language. Flask is easy to use and we all have experience with it. Postman will be used for creating and testing APIs due to its convenience.

    • Machine Learning: We decided to go with PyTorch for machine learning since it is one of the most popular libraries. It is also known to have an easier learning curve than other popular libraries such as Tensorflow. This is important because our team lacks ML experience and learning the tool as fast as possible would increase productivity.

    • Data Analysis: Some common Python libraries will be used to analyze our data. These include NumPy, Pandas , and matplotlib. These tools combined will help us learn the properties and characteristics of our data. Jupyter notebook will be used to help organize the data analysis process, and improve the code readability.

    Client side

    • UI: We decided to use React for the UI because it helps organize the data and variables of the application into components, making it very convenient to maintain our dashboard. Since React is one of the most popular front end frameworks right now, there will be a lot of support for it as well as a lot of potential new hires that are familiar with the framework. CSS 3 and HTML5 will be used for the basic styling and structure of the web app, as they are the most widely used front end languages.

    • State Management: We decided to use Redux to manage the state of the application since it works naturally to React. Our team also already has experience working with Redux which gave it a slight edge over the other state management libraries.

    • Data Visualization: We decided to use the React-based library Victory to visualize the data. They have very user friendly documentation on their official website which we find easy to learn from.

    Cache

    • Caching: We decided between Redis and memcached because they are two of the most popular open-source cache engines. We ultimately decided to use Redis to improve our web app performance mainly due to the extra functionalities it provides such as fine-tuning cache contents and durability.

    Database

    • Database: We decided to use a NoSQL database over a relational database because of its flexibility from not having a predefined schema. The user behavior analytics has to be flexible since the data we plan to store may change frequently. We decided on MongoDB because it is lightweight and we can easily host the database with MongoDB Atlas . Everyone on our team also has experience working with MongoDB.

    Infrastructure

    • Deployment: We decided to use Heroku over AWS, Azure, Google Cloud because it is free. Although there are advantages to the other cloud services, Heroku makes the most sense to our team because our primary goal is to build an MVP.

    Other Tools

    • Communication Slack will be used as the primary source of communication. It provides all the features needed for basic discussions. In terms of more interactive meetings, Zoom will be used for its video calls and screen sharing capabilities.

    • Source Control The project will be stored on GitHub and all code changes will be done though pull requests. This will help us keep the codebase clean and make it easy to revert changes when we need to.

    See more
    Anaconda logo

    Anaconda

    249
    271
    0
    The Enterprise Data Science Platform for Data Scientists, IT Professionals and Business Leaders
    249
    271
    + 1
    0
    PROS OF ANACONDA
      No pros available
      CONS OF ANACONDA
        No cons available

        related Anaconda posts

        Shared insights
        on
        Java
        Anaconda
        Python

        I am going to learn machine learning and self host an online IDE, the tool that i may use is Python, Anaconda, various python library and etc. which tools should i go for? this may include Java development, web development. Now i have 1 more candidate which are visual studio code online (code server). i will host on google cloud

        See more
        Guillaume Simler

        Jupyter Anaconda Pandas IPython

        A great way to prototype your data analytic modules. The use of the package is simple and user-friendly and the migration from ipython to python is fairly simple: a lot of cleaning, but no more.

        The negative aspect comes when you want to streamline your productive system or does CI with your anaconda environment: - most tools don't accept conda environments (as smoothly as pip requirements) - the conda environments (even with miniconda) have quite an overhead

        See more
        SciPy logo

        SciPy

        148
        91
        0
        Scientific Computing Tools for Python
        148
        91
        + 1
        0
        PROS OF SCIPY
          No pros available
          CONS OF SCIPY
            No cons available

            related SciPy posts

            PySpark logo

            PySpark

            103
            106
            0
            The Python API for Spark
            103
            106
            + 1
            0
            PROS OF PYSPARK
              No pros available
              CONS OF PYSPARK
                No cons available

                related PySpark posts

                Dataform logo

                Dataform

                70
                17
                0
                A framework for managing SQL based data operations.
                70
                17
                + 1
                0
                PROS OF DATAFORM
                  No pros available
                  CONS OF DATAFORM
                    No cons available

                    related Dataform posts

                    Pentaho Data Integration logo

                    Pentaho Data Integration

                    67
                    37
                    0
                    Easy to Use With the Power to Integrate All Data Types
                    67
                    37
                    + 1
                    0
                    PROS OF PENTAHO DATA INTEGRATION
                      No pros available
                      CONS OF PENTAHO DATA INTEGRATION
                        No cons available

                        related Pentaho Data Integration posts

                        Dask logo

                        Dask

                        47
                        65
                        0
                        A flexible library for parallel computing in Python
                        47
                        65
                        + 1
                        0
                        PROS OF DASK
                          No pros available
                          CONS OF DASK
                            No cons available

                            related Dask posts