What is DOMO and what are its top alternatives?
DOMO is a business intelligence and data visualization tool that allows users to connect and consolidate data from various sources, create interactive dashboards, and gain insights through data analysis. Its key features include real-time data access, collaboration tools, mobile app support, and pre-built connectors to popular data sources. However, some limitations of DOMO include complex pricing, limited customization options, and potential learning curve for new users.
- Tableau: Tableau is a powerful data visualization tool known for its user-friendly interface, extensive customization options, and ability to handle large datasets. Pros include robust analytics capabilities and strong community support, while cons may include higher pricing for advanced features.
- Power BI: Microsoft Power BI is a popular business intelligence tool that offers seamless integration with other Microsoft products, strong data modeling capabilities, and interactive visualizations. Pros include familiarity for Excel users and affordable pricing plans, while cons may include limitations in customization options.
- Looker: Looker is a data analytics platform that focuses on data exploration and collaboration, offering features such as centralized data modeling, advanced analytics functions, and embedded BI capabilities. Pros include scalable platform for growth and customizable reporting, while cons may include potentially steep learning curve for beginners.
- Sisense: Sisense is a comprehensive business intelligence software that enables users to create complex data visualizations, perform ad-hoc analysis, and share insights easily. Pros include fast data processing speed and AI-driven analytics, while cons may include limited customization options.
- QlikView: QlikView is a data visualization and business intelligence tool that emphasizes associative data indexing, offering interactive dashboards, data exploration tools, and real-time analytics. Pros include user-friendly interface and strong data discovery capabilities, while cons may include licensing complexity for larger organizations.
- Google Data Studio: Google Data Studio is a free business intelligence tool that allows users to create interactive reports and dashboards using data from multiple sources. Pros include collaboration features and integration with Google products, while cons may include limited data connectors compared to paid tools.
- Yellowfin BI: Yellowfin BI is an enterprise analytics platform that offers advanced data visualization capabilities, AI-driven insights, and collaboration features for sharing data within organizations. Pros include embedded analytics options and scalability for large datasets, while cons may include pricing structures based on user count.
- Dundas BI: Dundas BI is a flexible data visualization and analytics platform that focuses on customization, allowing users to create tailored dashboards, reports, and interactive data visualizations. Pros include extensive customization options and strong integration capabilities, while cons may include potential complexity for beginners.
- Zoho Analytics: Zoho Analytics is a cloud-based business intelligence tool that offers a range of features for data visualization, reporting, and collaboration, catering to businesses of all sizes. Pros include affordability and ease of use, while cons may include limitations in handling very large datasets.
- Birst: Birst is a cloud-based business intelligence tool that focuses on networked BI, allowing organizations to connect multiple data sources, collaborate on data insights, and deploy analytics at scale. Pros include networked analytics capabilities and fast deployment, while cons may include potentially complex pricing structures.
Top Alternatives to DOMO
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- Looker
We've built a unique data modeling language, connections to today's fastest analytical databases, and a service that you can deploy on any infrastructure, and explore on any device. Plus, we'll help you every step of the way. ...
- Power BI
It aims to provide interactive visualizations and business intelligence capabilities with an interface simple enough for end users to create their own reports and dashboards. ...
- Sisense
It is making business intelligence (BI) analytics easy with its simple drag-and-drop and scalable end-to-end BI processes that help to prepare, analyze, and visualize multiple complex datasets quickly. ...
- Snowflake
Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn. ...
- Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...
- Google Analytics
Google Analytics lets you measure your advertising ROI as well as track your Flash, video, and social networking sites and applications. ...
- Google Tag Manager
Tag Manager gives you the ability to add and update your own tags for conversion tracking, site analytics, remarketing, and more. There are nearly endless ways to track user behavior across your sites and apps, and the intuitive design lets you change tags whenever you want. ...
DOMO alternatives & related posts
- Capable of visualising billions of rows6
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies3
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Hello everyone,
My team and I are currently in the process of selecting a Business Intelligence (BI) tool for our actively developing company, which has over 500 employees. We are considering open-source options.
We are keen to connect with a Head of Analytics or BI Analytics professional who has extensive experience working with any of these systems and is willing to share their insights. Ideally, we would like to speak with someone from companies that have transitioned from proprietary BI tools (such as PowerBI, Qlik, or Tableau) to open-source BI tools, or vice versa.
If you have any contacts or recommendations for individuals we could reach out to regarding this matter, we would greatly appreciate it. Additionally, if you are personally willing to share your experiences, please feel free to reach out to me directly. Thank you!
- Real time in app customer chat support4
- GitHub integration4
- Reduces the barrier of entry to utilizing data1
- Price3
related Looker posts
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
We are a consumer mobile app IOS/Android startup. The app is instrumented with branch and Firebase. We use Google BigQuery. We are looking at tools that can support engagement and cohort analysis at an early stage price which we can grow with. Data Studio is the default but it would seem Looker provides more power. We don't have much insight into Amplitude other than the fact it is a popular PM tool. Please provide some insight.
- Cross-filtering18
- Database visualisation2
- Powerful Calculation Engine2
- Access from anywhere2
- Intuitive and complete internal ETL2
- Azure Based Service1
related Power BI posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Which among the two, Kyvos and Azure Analysis Services, should be used to build a Semantic Layer?
I have to build a Semantic Layer for the data warehouse platform and use Power BI for visualisation and the data lies in the Azure Managed Instance. I need to analyse the two platforms and find which suits best for the same.
related Sisense posts
- Public and Private Data Sharing7
- Multicloud4
- Good Performance4
- User Friendly4
- Great Documentation3
- Serverless2
- Economical1
- Usage based billing1
- Innovative1
related Snowflake posts
I'm wondering if any Cloud Firestore users might be open to sharing some input and challenges encountered when trying to create a low-cost, low-latency data pipeline to their Analytics warehouse (e.g. Google BigQuery, Snowflake, etc...)
I'm working with a platform by the name of Estuary.dev, an ETL/ELT and we are conducting some research on the pain points here to see if there are drawbacks of the Firestore->BQ extension and/or if users are seeking easy ways for getting nosql->fine-grained tabular data
Please feel free to drop some knowledge/wish list stuff on me for a better pipeline here!
I use Google BigQuery because it makes is super easy to query and store data for analytics workloads. If you're using GCP, you're likely using BigQuery. However, running data viz tools directly connected to BigQuery will run pretty slow. They recently announced BI Engine which will hopefully compete well against big players like Snowflake when it comes to concurrency.
What's nice too is that it has SQL-based ML tools, and it has great GIS support!
- API for searching logs, running reports3
- Alert system based on custom query results3
- Splunk language supports string, date manip, math, etc2
- Dashboarding on any log contents2
- Custom log parsing as well as automatic parsing2
- Query engine supports joining, aggregation, stats, etc2
- Rich GUI for searching live logs2
- Ability to style search results into reports2
- Granular scheduling and time window support1
- Query any log as key-value pairs1
- Splunk query language rich so lots to learn1
related Splunk posts
I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.
We are currently exploring Elasticsearch and Splunk for our centralized logging solution. I need some feedback about these two tools. We expect our logs in the range of upwards > of 10TB of logging data.
- Free1.5K
- Easy setup927
- Data visualization891
- Real-time stats698
- Comprehensive feature set406
- Goals tracking182
- Powerful funnel conversion reporting155
- Customizable reports139
- Custom events try83
- Elastic api53
- Updated regulary15
- Interactive Documentation8
- Google play4
- Walkman music video playlist3
- Industry Standard3
- Advanced ecommerce3
- Irina2
- Easy to integrate2
- Financial Management Challenges -2015h2
- Medium / Channel data split2
- Lifesaver2
- Confusing UX/UI11
- Super complex8
- Very hard to build out funnels6
- Poor web performance metrics4
- Very easy to confuse the user of the analytics3
- Time spent on page isn't accurate out of the box2
related Google Analytics posts
This is my stack in Application & Data
JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB
My Utilities Tools
Google Analytics Postman Elasticsearch
My Devops Tools
Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack
My Business Tools
Slack
Functionally, Amplitude and Mixpanel are incredibly similar. They both offer almost all the same functionality around tracking and visualizing user actions for analytics. You can track A/B test results in both. We ended up going with Amplitude at BaseDash because it has a more generous free tier for our uses (10 million actions per month, versus Mixpanel's 1000 monthly tracked users).
Segment isn't meant to compete with these tools, but instead acts as an API to send actions to them, and other analytics tools. If you're just sending event data to one of these tools, you probably don't need Segment. If you're using other analytics tools like Google Analytics and FullStory, Segment makes it easy to send events to all your tools at once.
Google Tag Manager
related Google Tag Manager posts
Hi,
This is a question for best practice regarding Segment and Google Tag Manager. I would love to use Segment and GTM together when we need to implement a lot of additional tools, such as Amplitude, Appsfyler, or any other engagement tool since we can send event data without additional SDK implementation, etc.
So, my question is, if you use Segment and Google Tag Manager, how did you define what you will push through Segment and what will you push through Google Tag Manager? For example, when implementing a Facebook Pixel or any other 3rd party marketing tag?
From my point of view, implementing marketing pixels should stay in GTM because of the tag/trigger control.
If you are using Segment and GTM together, I would love to learn more about your best practice.
Thanks!