StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Dremio vs Vertica

Dremio vs Vertica

OverviewDecisionsComparisonAlternatives

Overview

Vertica
Vertica
Stacks90
Followers120
Votes16
Dremio
Dremio
Stacks116
Followers348
Votes8

Vertica vs Dremio: What are the differences?

What is Vertica? Storage platform designed to handle large volumes of data. It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

What is Dremio? Self-service data for everyone. It is a data-as-a-service platform that empowers users to discover, curate, accelerate, and share any data at any time, regardless of location, volume, or structure. Modern data is managed by a wide range of technologies, including relational databases, NoSQL datastores, file systems, Hadoop, and others.

Vertica and Dremio can be primarily classified as "Big Data" tools.

Some of the features offered by Vertica are:

  • Analyze All of Your Data. No longer move data or settle for siloed views
  • Achieve Scale and Performance
  • Fear of growing data volumes and users is a thing of the past

On the other hand, Dremio provides the following key features:

  • Democratize all your data
  • Make your data engineers more productive
  • Accelerate your favorite tools

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Vertica, Dremio

karunakaran
karunakaran

Consultant

Jun 26, 2020

Needs advice

I am trying to build a data lake by pulling data from multiple data sources ( custom-built tools, excel files, CSV files, etc) and use the data lake to generate dashboards.

My question is which is the best tool to do the following:

  1. Create pipelines to ingest the data from multiple sources into the data lake
  2. Help me in aggregating and filtering data available in the data lake.
  3. Create new reports by combining different data elements from the data lake.

I need to use only open-source tools for this activity.

I appreciate your valuable inputs and suggestions. Thanks in Advance.

80.5k views80.5k
Comments
datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments

Detailed Comparison

Vertica
Vertica
Dremio
Dremio

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Dremio—the data lake engine, operationalizes your data lake storage and speeds your analytics processes with a high-performance and high-efficiency query engine while also democratizing data access for data scientists and analysts.

Analyze All of Your Data. No longer move data or settle for siloed views;Achieve Scale and Performance;Fear of growing data volumes and users is a thing of the past;Future-Proof Your Analytics
Democratize all your data; Make your data engineers more productive; Accelerate your favorite tools; Self service, for everybody
Statistics
Stacks
90
Stacks
116
Followers
120
Followers
348
Votes
16
Votes
8
Pros & Cons
Pros
  • 3
    Shared nothing or shared everything architecture
  • 1
    Query-Optimized Storage
  • 1
    Fully automated Database Designer tool
  • 1
    Reduce costs as reduced hardware is required
  • 1
    Automatic Data Marts (Flatten Tables)
Pros
  • 3
    Nice GUI to enable more people to work with Data
  • 2
    Easier to Deploy
  • 2
    Connect NoSQL databases with RDBMS
  • 1
    Free
Cons
  • 1
    Works only on Iceberg structured data
Integrations
Oracle
Oracle
Golang
Golang
MongoDB
MongoDB
MySQL
MySQL
Sass
Sass
Mode
Mode
PowerBI
PowerBI
Tableau
Tableau
Talend
Talend
Amazon S3
Amazon S3
Python
Python
Tableau
Tableau
Azure Database for PostgreSQL
Azure Database for PostgreSQL
Qlik Sense
Qlik Sense
PowerBI
PowerBI

What are some alternatives to Vertica, Dremio?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase