Alternatives to Git LFS logo

Alternatives to Git LFS

Git, GitHub, Visual Studio Code, Docker, and npm are the most popular alternatives and competitors to Git LFS.
13
11
+ 1
0

What is Git LFS and what are its top alternatives?

Git LFS (Large File Storage) is an open-source extension for Git that manages large files efficiently by storing them outside the repository, reducing the burden on the repository size. It helps in handling files like images, videos, and binaries that are too large to be handled effectively by Git. Although Git LFS streamlines the management of large files, it does have limitations like slower performance for large repositories and potential scalability issues.

  1. Git Annex: Git Annex allows managing large files efficiently by using symbolic links and careful tracking of files. It offers features like encryption, syncing between repositories, and support for multiple storage locations. One of its pros is excellent data integrity, but a con is a bit of a learning curve for new users compared to Git LFS.
  2. Perforce Helix Core: Perforce Helix Core is a version control system that includes support for handling large files efficiently. It offers features like high performance, enterprise-grade security, and scalability. A downside compared to Git LFS could be the complexity and cost associated with enterprise usage.
  3. Mercurial Largefiles Extension: Mercurial Largefiles Extension enables handling large files in Mercurial repositories by using a similar approach to Git LFS. Key features include lightweight operation, tracking large files efficiently, and seamless integration with existing Mercurial workflows. The downside may be the limited adoption compared to Git LFS.
  4. SVN (Subversion): SVN is a traditional version control system that can handle large files effectively. It offers features like atomic commits, efficient branching and merging, and support for handling large files. A con compared to Git LFS is the centralized nature of SVN, which may not be suitable for all workflows.
  5. AWS CodeCommit: AWS CodeCommit is a managed source control service that supports Git repositories with enhanced storage capabilities for large files. Key features include scalable infrastructure, integration with other AWS services, and high availability. A con compared to Git LFS could be the dependency on AWS infrastructure and potential cost implications.
  6. Plastic SCM: Plastic SCM is a distributed version control system that offers efficient handling of large files through a built-in feature. It provides features like branch visualization, flexible workflows, and support for large binary files. A con could be the learning curve for users accustomed to Git's simplicity.
  7. Pachyderm: Pachyderm is a data versioning and pipeline management platform that supports handling large data files efficiently. Key features include data lineage tracking, versioning data pipelines, and collaboration on data workflows. A con compared to Git LFS could be the focus on data-specific workflows rather than general version control.
  8. Plaza: Plaza is an open-source data version control system designed for managing large datasets and models efficiently. It offers features like data versioning, reproducibility, and scalability for handling big data. A downside compared to Git LFS could be the specific use case for data-centric projects.
  9. BFG Repo-Cleaner: BFG Repo-Cleaner is a tool for removing large files from Git repositories, which can be used as a complement to Git LFS. Key features include cleaning up large files, optimizing repository size, and restoring history integrity. A con could be the manual intervention required for cleaning up repositories compared to Git LFS automation.
  10. DVC (Data Version Control): DVC is an open-source version control system focused on managing machine learning projects with large data files efficiently. It offers features like data versioning, reproducibility, and integration with Git for code and data management. A downside compared to Git LFS could be the specialization for machine learning projects rather than general file management.

Top Alternatives to Git LFS

  • Git
    Git

    Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...

  • GitHub
    GitHub

    GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together. ...

  • Visual Studio Code
    Visual Studio Code

    Build and debug modern web and cloud applications. Code is free and available on your favorite platform - Linux, Mac OSX, and Windows. ...

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • npm
    npm

    npm is the command-line interface to the npm ecosystem. It is battle-tested, surprisingly flexible, and used by hundreds of thousands of JavaScript developers every day. ...

  • TypeScript
    TypeScript

    TypeScript is a language for application-scale JavaScript development. It's a typed superset of JavaScript that compiles to plain JavaScript. ...

  • GitLab
    GitLab

    GitLab offers git repository management, code reviews, issue tracking, activity feeds and wikis. Enterprises install GitLab on-premise and connect it with LDAP and Active Directory servers for secure authentication and authorization. A single GitLab server can handle more than 25,000 users but it is also possible to create a high availability setup with multiple active servers. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

Git LFS alternatives & related posts

Git logo

Git

297.6K
6.6K
Fast, scalable, distributed revision control system
297.6K
6.6K
PROS OF GIT
  • 1.4K
    Distributed version control system
  • 1.1K
    Efficient branching and merging
  • 959
    Fast
  • 845
    Open source
  • 726
    Better than svn
  • 368
    Great command-line application
  • 306
    Simple
  • 291
    Free
  • 232
    Easy to use
  • 222
    Does not require server
  • 27
    Distributed
  • 22
    Small & Fast
  • 18
    Feature based workflow
  • 15
    Staging Area
  • 13
    Most wide-spread VSC
  • 11
    Role-based codelines
  • 11
    Disposable Experimentation
  • 7
    Frictionless Context Switching
  • 6
    Data Assurance
  • 5
    Efficient
  • 4
    Just awesome
  • 3
    Github integration
  • 3
    Easy branching and merging
  • 2
    Compatible
  • 2
    Flexible
  • 2
    Possible to lose history and commits
  • 1
    Rebase supported natively; reflog; access to plumbing
  • 1
    Light
  • 1
    Team Integration
  • 1
    Fast, scalable, distributed revision control system
  • 1
    Easy
  • 1
    Flexible, easy, Safe, and fast
  • 1
    CLI is great, but the GUI tools are awesome
  • 1
    It's what you do
  • 0
    Phinx
CONS OF GIT
  • 16
    Hard to learn
  • 11
    Inconsistent command line interface
  • 9
    Easy to lose uncommitted work
  • 8
    Worst documentation ever possibly made
  • 5
    Awful merge handling
  • 3
    Unexistent preventive security flows
  • 3
    Rebase hell
  • 2
    Ironically even die-hard supporters screw up badly
  • 2
    When --force is disabled, cannot rebase
  • 1
    Doesn't scale for big data

related Git posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 10M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
GitHub logo

GitHub

286K
10.3K
Powerful collaboration, review, and code management for open source and private development projects
286K
10.3K
PROS OF GITHUB
  • 1.8K
    Open source friendly
  • 1.5K
    Easy source control
  • 1.3K
    Nice UI
  • 1.1K
    Great for team collaboration
  • 867
    Easy setup
  • 504
    Issue tracker
  • 487
    Great community
  • 483
    Remote team collaboration
  • 449
    Great way to share
  • 442
    Pull request and features planning
  • 147
    Just works
  • 132
    Integrated in many tools
  • 122
    Free Public Repos
  • 116
    Github Gists
  • 113
    Github pages
  • 83
    Easy to find repos
  • 62
    Open source
  • 60
    Easy to find projects
  • 60
    It's free
  • 56
    Network effect
  • 49
    Extensive API
  • 43
    Organizations
  • 42
    Branching
  • 34
    Developer Profiles
  • 32
    Git Powered Wikis
  • 30
    Great for collaboration
  • 24
    It's fun
  • 23
    Clean interface and good integrations
  • 22
    Community SDK involvement
  • 20
    Learn from others source code
  • 16
    Because: Git
  • 14
    It integrates directly with Azure
  • 10
    Standard in Open Source collab
  • 10
    Newsfeed
  • 8
    Fast
  • 8
    Beautiful user experience
  • 8
    It integrates directly with Hipchat
  • 7
    Easy to discover new code libraries
  • 6
    Smooth integration
  • 6
    Integrations
  • 6
    Graphs
  • 6
    Nice API
  • 6
    It's awesome
  • 6
    Cloud SCM
  • 5
    Quick Onboarding
  • 5
    Remarkable uptime
  • 5
    CI Integration
  • 5
    Reliable
  • 5
    Hands down best online Git service available
  • 4
    Version Control
  • 4
    Unlimited Public Repos at no cost
  • 4
    Simple but powerful
  • 4
    Loved by developers
  • 4
    Free HTML hosting
  • 4
    Uses GIT
  • 4
    Security options
  • 4
    Easy to use and collaborate with others
  • 3
    Easy deployment via SSH
  • 3
    Ci
  • 3
    IAM
  • 3
    Nice to use
  • 2
    Easy and efficient maintainance of the projects
  • 2
    Beautiful
  • 2
    Self Hosted
  • 2
    Issues tracker
  • 2
    Easy source control and everything is backed up
  • 2
    Never dethroned
  • 2
    All in one development service
  • 2
    Good tools support
  • 2
    Free HTML hostings
  • 2
    IAM integration
  • 2
    Very Easy to Use
  • 2
    Easy to use
  • 2
    Leads the copycats
  • 2
    Free private repos
  • 1
    Profound
  • 1
    Dasf
CONS OF GITHUB
  • 55
    Owned by micrcosoft
  • 38
    Expensive for lone developers that want private repos
  • 15
    Relatively slow product/feature release cadence
  • 10
    API scoping could be better
  • 9
    Only 3 collaborators for private repos
  • 4
    Limited featureset for issue management
  • 3
    Does not have a graph for showing history like git lens
  • 2
    GitHub Packages does not support SNAPSHOT versions
  • 1
    No multilingual interface
  • 1
    Takes a long time to commit
  • 1
    Expensive

related GitHub posts

Johnny Bell

I was building a personal project that I needed to store items in a real time database. I am more comfortable with my Frontend skills than my backend so I didn't want to spend time building out anything in Ruby or Go.

I stumbled on Firebase by #Google, and it was really all I needed. It had realtime data, an area for storing file uploads and best of all for the amount of data I needed it was free!

I built out my application using tools I was familiar with, React for the framework, Redux.js to manage my state across components, and styled-components for the styling.

Now as this was a project I was just working on in my free time for fun I didn't really want to pay for hosting. I did some research and I found Netlify. I had actually seen them at #ReactRally the year before and deployed a Gatsby site to Netlify already.

Netlify was very easy to setup and link to my GitHub account you select a repo and pretty much with very little configuration you have a live site that will deploy every time you push to master.

With the selection of these tools I was able to build out my application, connect it to a realtime database, and deploy to a live environment all with $0 spent.

If you're looking to build out a small app I suggest giving these tools a go as you can get your idea out into the real world for absolutely no cost.

See more

Context: I wanted to create an end to end IoT data pipeline simulation in Google Cloud IoT Core and other GCP services. I never touched Terraform meaningfully until working on this project, and it's one of the best explorations in my development career. The documentation and syntax is incredibly human-readable and friendly. I'm used to building infrastructure through the google apis via Python , but I'm so glad past Sung did not make that decision. I was tempted to use Google Cloud Deployment Manager, but the templates were a bit convoluted by first impression. I'm glad past Sung did not make this decision either.

Solution: Leveraging Google Cloud Build Google Cloud Run Google Cloud Bigtable Google BigQuery Google Cloud Storage Google Compute Engine along with some other fun tools, I can deploy over 40 GCP resources using Terraform!

Check Out My Architecture: CLICK ME

Check out the GitHub repo attached

See more
Visual Studio Code logo

Visual Studio Code

179.5K
2.3K
Build and debug modern web and cloud applications, by Microsoft
179.5K
2.3K
PROS OF VISUAL STUDIO CODE
  • 340
    Powerful multilanguage IDE
  • 308
    Fast
  • 193
    Front-end develop out of the box
  • 158
    Support TypeScript IntelliSense
  • 142
    Very basic but free
  • 126
    Git integration
  • 106
    Intellisense
  • 78
    Faster than Atom
  • 53
    Better ui, easy plugins, and nice git integration
  • 45
    Great Refactoring Tools
  • 44
    Good Plugins
  • 42
    Terminal
  • 38
    Superb markdown support
  • 36
    Open Source
  • 35
    Extensions
  • 26
    Awesome UI
  • 26
    Large & up-to-date extension community
  • 24
    Powerful and fast
  • 22
    Portable
  • 18
    Best code editor
  • 18
    Best editor
  • 17
    Easy to get started with
  • 15
    Lots of extensions
  • 15
    Good for begginers
  • 15
    Crossplatform
  • 15
    Built on Electron
  • 14
    Extensions for everything
  • 14
    Open, cross-platform, fast, monthly updates
  • 14
    All Languages Support
  • 13
    Easy to use and learn
  • 12
    "fast, stable & easy to use"
  • 12
    Extensible
  • 11
    Ui design is great
  • 11
    Totally customizable
  • 11
    Git out of the box
  • 11
    Useful for begginer
  • 11
    Faster edit for slow computer
  • 10
    SSH support
  • 10
    Great community
  • 10
    Fast Startup
  • 9
    Works With Almost EveryThing You Need
  • 9
    Great language support
  • 9
    Powerful Debugger
  • 9
    It has terminal and there are lots of shortcuts in it
  • 8
    Can compile and run .py files
  • 8
    Python extension is fast
  • 7
    Features rich
  • 7
    Great document formater
  • 6
    He is not Michael
  • 6
    Extension Echosystem
  • 6
    She is not Rachel
  • 6
    Awesome multi cursor support
  • 5
    VSCode.pro Course makes it easy to learn
  • 5
    Language server client
  • 5
    SFTP Workspace
  • 5
    Very proffesional
  • 5
    Easy azure
  • 4
    Has better support and more extentions for debugging
  • 4
    Supports lots of operating systems
  • 4
    Excellent as git difftool and mergetool
  • 4
    Virtualenv integration
  • 3
    Better autocompletes than Atom
  • 3
    Has more than enough languages for any developer
  • 3
    'batteries included'
  • 3
    More tools to integrate with vs
  • 3
    Emmet preinstalled
  • 2
    VS Code Server: Browser version of VS Code
  • 2
    CMake support with autocomplete
  • 2
    Microsoft
  • 2
    Customizable
  • 2
    Light
  • 2
    Big extension marketplace
  • 2
    Fast and ruby is built right in
  • 1
    File:///C:/Users/ydemi/Downloads/yuksel_demirkaya_webpa
CONS OF VISUAL STUDIO CODE
  • 46
    Slow startup
  • 29
    Resource hog at times
  • 20
    Poor refactoring
  • 13
    Poor UI Designer
  • 11
    Weak Ui design tools
  • 10
    Poor autocomplete
  • 8
    Super Slow
  • 8
    Huge cpu usage with few installed extension
  • 8
    Microsoft sends telemetry data
  • 7
    Poor in PHP
  • 6
    It's MicroSoft
  • 3
    Poor in Python
  • 3
    No Built in Browser Preview
  • 3
    No color Intergrator
  • 3
    Very basic for java development and buggy at times
  • 3
    No built in live Preview
  • 3
    Electron
  • 2
    Bad Plugin Architecture
  • 2
    Powered by Electron
  • 1
    Terminal does not identify path vars sometimes
  • 1
    Slow C++ Language Server

related Visual Studio Code posts

Yshay Yaacobi

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Docker logo

Docker

174.5K
3.9K
Enterprise Container Platform for High-Velocity Innovation.
174.5K
3.9K
PROS OF DOCKER
  • 823
    Rapid integration and build up
  • 692
    Isolation
  • 521
    Open source
  • 505
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 460
    Lightweight
  • 218
    Standardization
  • 185
    Scalable
  • 106
    Upgrading / down­grad­ing / ap­pli­ca­tion versions
  • 88
    Security
  • 85
    Private paas environments
  • 34
    Portability
  • 26
    Limit resource usage
  • 17
    Game changer
  • 16
    I love the way docker has changed virtualization
  • 14
    Fast
  • 12
    Concurrency
  • 8
    Docker's Compose tools
  • 6
    Fast and Portable
  • 6
    Easy setup
  • 5
    Because its fun
  • 4
    Makes shipping to production very simple
  • 3
    It's dope
  • 3
    Highly useful
  • 2
    Does a nice job hogging memory
  • 2
    Open source and highly configurable
  • 2
    Simplicity, isolation, resource effective
  • 2
    MacOS support FAKE
  • 2
    Its cool
  • 2
    Docker hub for the FTW
  • 2
    HIgh Throughput
  • 2
    Very easy to setup integrate and build
  • 2
    Package the environment with the application
  • 2
    Super
  • 0
    Asdfd
CONS OF DOCKER
  • 8
    New versions == broken features
  • 6
    Unreliable networking
  • 6
    Documentation not always in sync
  • 4
    Moves quickly
  • 3
    Not Secure

related Docker posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 11.6M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 10M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
npm logo

npm

124.6K
1.6K
The package manager for JavaScript.
124.6K
1.6K
PROS OF NPM
  • 647
    Best package management system for javascript
  • 382
    Open-source
  • 327
    Great community
  • 148
    More packages than rubygems, pypi, or packagist
  • 112
    Nice people matter
  • 6
    As fast as yarn but really free of facebook
  • 6
    Audit feature
  • 4
    Good following
  • 1
    Super fast
  • 1
    Stability
CONS OF NPM
  • 5
    Problems with lockfiles
  • 5
    Bad at package versioning and being deterministic
  • 3
    Node-gyp takes forever
  • 1
    Super slow

related npm posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 27 upvotes · 5.1M views

Our whole Node.js backend stack consists of the following tools:

  • Lerna as a tool for multi package and multi repository management
  • npm as package manager
  • NestJS as Node.js framework
  • TypeScript as programming language
  • ExpressJS as web server
  • Swagger UI for visualizing and interacting with the API’s resources
  • Postman as a tool for API development
  • TypeORM as object relational mapping layer
  • JSON Web Token for access token management

The main reason we have chosen Node.js over PHP is related to the following artifacts:

  • Made for the web and widely in use: Node.js is a software platform for developing server-side network services. Well-known projects that rely on Node.js include the blogging software Ghost, the project management tool Trello and the operating system WebOS. Node.js requires the JavaScript runtime environment V8, which was specially developed by Google for the popular Chrome browser. This guarantees a very resource-saving architecture, which qualifies Node.js especially for the operation of a web server. Ryan Dahl, the developer of Node.js, released the first stable version on May 27, 2009. He developed Node.js out of dissatisfaction with the possibilities that JavaScript offered at the time. The basic functionality of Node.js has been mapped with JavaScript since the first version, which can be expanded with a large number of different modules. The current package managers (npm or Yarn) for Node.js know more than 1,000,000 of these modules.
  • Fast server-side solutions: Node.js adopts the JavaScript "event-loop" to create non-blocking I/O applications that conveniently serve simultaneous events. With the standard available asynchronous processing within JavaScript/TypeScript, highly scalable, server-side solutions can be realized. The efficient use of the CPU and the RAM is maximized and more simultaneous requests can be processed than with conventional multi-thread servers.
  • A language along the entire stack: Widely used frameworks such as React or AngularJS or Vue.js, which we prefer, are written in JavaScript/TypeScript. If Node.js is now used on the server side, you can use all the advantages of a uniform script language throughout the entire application development. The same language in the back- and frontend simplifies the maintenance of the application and also the coordination within the development team.
  • Flexibility: Node.js sets very few strict dependencies, rules and guidelines and thus grants a high degree of flexibility in application development. There are no strict conventions so that the appropriate architecture, design structures, modules and features can be freely selected for the development.
See more
Johnny Bell

So when starting a new project you generally have your go to tools to get your site up and running locally, and some scripts to build out a production version of your site. Create React App is great for that, however for my projects I feel as though there is to much bloat in Create React App and if I use it, then I'm tied to React, which I love but if I want to switch it up to Vue or something I want that flexibility.

So to start everything up and running I clone my personal Webpack boilerplate - This is still in Webpack 3, and does need some updating but gets the job done for now. So given the name of the repo you may have guessed that yes I am using Webpack as my bundler I use Webpack because it is so powerful, and even though it has a steep learning curve once you get it, its amazing.

The next thing I do is make sure my machine has Node.js configured and the right version installed then run Yarn. I decided to use Yarn because when I was building out this project npm had some shortcomings such as no .lock file. I could probably move from Yarn to npm but I don't really see any point really.

I use Babel to transpile all of my #ES6 to #ES5 so the browser can read it, I love Babel and to be honest haven't looked up any other transpilers because Babel is amazing.

Finally when developing I have Prettier setup to make sure all my code is clean and uniform across all my JS files, and ESLint to make sure I catch any errors or code that could be optimized.

I'm really happy with this stack for my local env setup, and I'll probably stick with it for a while.

See more
TypeScript logo

TypeScript

94.1K
502
A superset of JavaScript that compiles to clean JavaScript output
94.1K
502
PROS OF TYPESCRIPT
  • 174
    More intuitive and type safe javascript
  • 106
    Type safe
  • 80
    JavaScript superset
  • 48
    The best AltJS ever
  • 27
    Best AltJS for BackEnd
  • 15
    Powerful type system, including generics & JS features
  • 11
    Compile time errors
  • 11
    Nice and seamless hybrid of static and dynamic typing
  • 10
    Aligned with ES development for compatibility
  • 7
    Angular
  • 7
    Structural, rather than nominal, subtyping
  • 5
    Starts and ends with JavaScript
  • 1
    Garbage collection
CONS OF TYPESCRIPT
  • 5
    Code may look heavy and confusing
  • 4
    Hype

related TypeScript posts

Yshay Yaacobi

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more
Adebayo Akinlaja
Engineering Manager at Andela · | 30 upvotes · 3.4M views

I picked up an idea to develop and it was no brainer I had to go with React for the frontend. I was faced with challenges when it came to what component framework to use. I had worked extensively with Material-UI but I needed something different that would offer me wider range of well customized components (I became pretty slow at styling). I brought in Evergreen after several sampling and reads online but again, after several prototype development against Evergreen—since I was using TypeScript and I had to import custom Type, it felt exhaustive. After I validated Evergreen with the designs of the idea I was developing, I also noticed I might have to do a lot of styling. I later stumbled on Material Kit, the one specifically made for React . It was promising with beautifully crafted components, most of which fits into the designs pages I had on ground.

A major problem of Material Kit for me is it isn't written in TypeScript and there isn't any plans to support its TypeScript version. I rolled up my sleeve and started converting their components to TypeScript and if you'll ask me, I am still on it.

In summary, I used the Create React App with TypeScript support and I am spending some time converting Material Kit to TypeScript before I start developing against it. All of these components are going to be hosted on Bit.

If you feel I am crazy or I have gotten something wrong, I'll be willing to listen to your opinion. Also, if you want to have a share of whatever TypeScript version of Material Kit I end up coming up with, let me know.

See more
GitLab logo

GitLab

61.9K
2.5K
Open source self-hosted Git management software
61.9K
2.5K
PROS OF GITLAB
  • 508
    Self hosted
  • 431
    Free
  • 339
    Has community edition
  • 242
    Easy setup
  • 240
    Familiar interface
  • 137
    Includes many features, including ci
  • 113
    Nice UI
  • 84
    Good integration with gitlabci
  • 57
    Simple setup
  • 35
    Has an official mobile app
  • 34
    Free private repository
  • 31
    Continuous Integration
  • 23
    Open source, great ui (like github)
  • 18
    Slack Integration
  • 15
    Full CI flow
  • 11
    Free and unlimited private git repos
  • 10
    All in one (Git, CI, Agile..)
  • 10
    User, group, and project access management is simple
  • 8
    Intuitive UI
  • 8
    Built-in CI
  • 6
    Full DevOps suite with Git
  • 6
    Both public and private Repositories
  • 5
    Integrated Docker Registry
  • 5
    So easy to use
  • 5
    CI
  • 5
    Build/pipeline definition alongside code
  • 5
    It's powerful source code management tool
  • 4
    Dockerized
  • 4
    It's fully integrated
  • 4
    On-premises
  • 4
    Security and Stable
  • 4
    Unlimited free repos & collaborators
  • 4
    Not Microsoft Owned
  • 4
    Excellent
  • 4
    Issue system
  • 4
    Mattermost Chat client
  • 3
    Great for team collaboration
  • 3
    Free private repos
  • 3
    Because is the best remote host for git repositories
  • 3
    Built-in Docker Registry
  • 3
    Opensource
  • 3
    Low maintenance cost due omnibus-deployment
  • 3
    I like the its runners and executors feature
  • 2
    Beautiful
  • 2
    Groups of groups
  • 2
    Multilingual interface
  • 2
    Powerful software planning and maintaining tools
  • 2
    Review Apps feature
  • 2
    Kubernetes integration with GitLab CI
  • 2
    One-click install through DigitalOcean
  • 2
    Powerful Continuous Integration System
  • 2
    It includes everything I need, all packaged with docker
  • 2
    The dashboard with deployed environments
  • 2
    HipChat intergration
  • 2
    Many private repo
  • 2
    Kubernetes Integration
  • 2
    Published IP list for whitelisting (gl-infra#434)
  • 2
    Wounderful
  • 2
    Native CI
  • 1
    Supports Radius/Ldap & Browser Code Edits
CONS OF GITLAB
  • 28
    Slow ui performance
  • 9
    Introduce breaking bugs every release
  • 6
    Insecure (no published IP list for whitelisting)
  • 2
    Built-in Docker Registry
  • 1
    Review Apps feature

related GitLab posts

Tim Abbott
Shared insights
on
GitHubGitHubGitLabGitLab
at

I have mixed feelings on GitHub as a product and our use of it for the Zulip open source project. On the one hand, I do feel that being on GitHub helps people discover Zulip, because we have enough stars (etc.) that we rank highly among projects on the platform. and there is a definite benefit for lowering barriers to contribution (which is important to us) that GitHub has such a dominant position in terms of what everyone has accounts with.

But even ignoring how one might feel about their new corporate owner (MicroSoft), in a lot of ways GitHub is a bad product for open source projects. Years after the "Dear GitHub" letter, there are still basic gaps in its issue tracker:

  • You can't give someone permission to label/categorize issues without full write access to a project (including ability to merge things to master, post releases, etc.).
  • You can't let anyone with a GitHub account self-assign issues to themselves.
  • Many more similar issues.

It's embarrassing, because I've talked to GitHub product managers at various open source events about these things for 3 years, and they always agree the thing is important, but then nothing ever improves in the Issues product. Maybe the new management at MicroSoft will fix their product management situation, but if not, I imagine we'll eventually do the migration to GitLab.

We have a custom bot project, http://github.com/zulip/zulipbot, to deal with some of these issues where possible, and every other large project we talk to does the same thing, more or less.

See more
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 743.5K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Kubernetes logo

Kubernetes

59.9K
681
Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
59.9K
681
PROS OF KUBERNETES
  • 166
    Leading docker container management solution
  • 129
    Simple and powerful
  • 107
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
  • 25
    Scale services
  • 20
    Replication controller
  • 11
    Permission managment
  • 9
    Supports autoscaling
  • 8
    Simple
  • 8
    Cheap
  • 6
    Self-healing
  • 5
    Open, powerful, stable
  • 5
    Reliable
  • 5
    No cloud platform lock-in
  • 5
    Promotes modern/good infrascture practice
  • 4
    Scalable
  • 4
    Quick cloud setup
  • 3
    Custom and extensibility
  • 3
    Captain of Container Ship
  • 3
    Cloud Agnostic
  • 3
    Backed by Red Hat
  • 3
    Runs on azure
  • 3
    A self healing environment with rich metadata
  • 2
    Everything of CaaS
  • 2
    Gke
  • 2
    Golang
  • 2
    Easy setup
  • 2
    Expandable
  • 2
    Sfg
CONS OF KUBERNETES
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
  • 1
    Additional vendor lock-in (Docker)
  • 1
    More moving parts to secure
  • 1
    Additional Technology Overhead

related Kubernetes posts

Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 12.7M views

How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

https://eng.uber.com/distributed-tracing/

(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

See more
Yshay Yaacobi

Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

See more