StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Hadoop vs RocksDB

Hadoop vs RocksDB

OverviewDecisionsComparisonAlternatives

Overview

Hadoop
Hadoop
Stacks2.7K
Followers2.3K
Votes56
GitHub Stars15.3K
Forks9.1K
RocksDB
RocksDB
Stacks141
Followers290
Votes11
GitHub Stars30.9K
Forks6.6K

Hadoop vs RocksDB: What are the differences?

Introduction:

Hadoop and RocksDB are both powerful tools used in big data processing, but they have key differences that make them suitable for different use cases. Below are the key differences between Hadoop and RocksDB:

  1. Storage Type: Hadoop is designed for distributed storage and processing of large data sets across clusters of computers using a simple programming model. On the other hand, RocksDB is an embedded key-value store optimized for fast storage and retrieval of data on local storage devices like hard drives or solid-state drives (SSDs).

  2. Use Case: Hadoop is commonly used for batch processing of large data sets where fault tolerance and scalability are essential. It is ideal for processing large volumes of data in a distributed environment. In contrast, RocksDB is suitable for applications that require low-latency reads and writes, making it a good choice for real-time processing and caching.

  3. Consistency Model: Hadoop follows a strong consistency model, ensuring that all nodes see the same data at the same time. This ensures data integrity but may impact performance in certain scenarios. RocksDB, on the other hand, allows for eventual consistency, where some nodes may have slightly outdated data at any given time, prioritizing performance over strict consistency.

  4. Query Language: Hadoop uses MapReduce as its processing model, which involves writing code in Java, Python, or other languages to process data. RocksDB, being a key-value store, provides an API for storing and retrieving data directly without the need for complex query languages.

  5. Data Processing Speed: Due to its distributed nature, Hadoop may face issues related to data transfer and network latency, impacting processing speed. RocksDB, being a local storage engine, can offer faster data processing speeds by minimizing data transfer over a network and accessing data directly from local storage.

  6. Scalability: Hadoop is highly scalable and can handle petabytes of data across large clusters of machines, making it suitable for organizations dealing with massive data volumes. RocksDB, while not designed for distributed processing, can scale vertically by leveraging faster storage devices or increasing memory capacity for improved performance.

In Summary, Hadoop is suited for distributed batch processing of large data sets, while RocksDB excels in low-latency read/write operations for real-time processing and caching applications.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Hadoop, RocksDB

D
D

Feb 9, 2022

Needs adviceonMilvusMilvusHBaseHBaseRocksDBRocksDB

I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!

174k views174k
Comments
Mr
Mr

SVP CTO

Apr 22, 2021

Needs adviceonMarkLogicMarkLogicHadoopHadoopSnowflakeSnowflake

For a property and casualty insurance company, we currently use MarkLogic and Hadoop for our raw data lake. Trying to figure out how snowflake fits in the picture. Does anybody have some good suggestions/best practices for when to use and what data to store in Mark logic versus Snowflake versus a hadoop or all three of these platforms redundant with one another?

136k views136k
Comments
Mr
Mr

SVP CTO

Apr 22, 2021

Needs advice

for property and casualty insurance company we current Use marklogic and Hadoop for our raw data lake. Trying to figure out how snowflake fits in the picture. Does anybody have some good suggestions/best practices for when to use and what data to store in Mark logic versus snowflake versus a hadoop or all three of these platforms redundant with one another?

23.6k views23.6k
Comments

Detailed Comparison

Hadoop
Hadoop
RocksDB
RocksDB

The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

RocksDB is an embeddable persistent key-value store for fast storage. RocksDB can also be the foundation for a client-server database but our current focus is on embedded workloads. RocksDB builds on LevelDB to be scalable to run on servers with many CPU cores, to efficiently use fast storage, to support IO-bound, in-memory and write-once workloads, and to be flexible to allow for innovation.

-
Designed for application servers wanting to store up to a few terabytes of data on locally attached Flash drives or in RAM;Optimized for storing small to medium size key-values on fast storage -- flash devices or in-memory;Scales linearly with number of CPUs so that it works well on ARM processors
Statistics
GitHub Stars
15.3K
GitHub Stars
30.9K
GitHub Forks
9.1K
GitHub Forks
6.6K
Stacks
2.7K
Stacks
141
Followers
2.3K
Followers
290
Votes
56
Votes
11
Pros & Cons
Pros
  • 39
    Great ecosystem
  • 11
    One stack to rule them all
  • 4
    Great load balancer
  • 1
    Java syntax
  • 1
    Amazon aws
Pros
  • 5
    Very fast
  • 3
    Made by Facebook
  • 2
    Consistent performance
  • 1
    Ability to add logic to the database layer where needed

What are some alternatives to Hadoop, RocksDB?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase