Leaf is a Machine Intelligence Framework engineered by software developers, not scientists. It was inspired by the brilliant people behind TensorFlow, Torch, Caffe, Rust and numerous research papers and brings modularity, performance and portability to deep learning. Leaf is lean and tries to introduce minimal technical debt to your stack.
Leaf is a tool in the Development & Training Tools category of a tech stack.
No pros listed yet.
No cons listed yet.
What are some alternatives to Leaf?
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.
scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.
Deep Learning library for Python. Convnets, recurrent neural networks, and more. Runs on TensorFlow or Theano. https://keras.io/
Rust are some of the popular tools that integrate with Leaf. Here's a list of all 1 tools that integrate with Leaf.