+ 1

What is MapD?

Interactively query and visualize massive datasets with the parallel power of GPUs.
MapD is a tool in the Databases category of a tech stack.
MapD is an open source tool with GitHub stars and GitHub forks. Here’s a link to MapD's open source repository on GitHub

Who uses MapD?


6 developers on StackShare have stated that they use MapD.

MapD Integrations

MySQL, PostgreSQL, Amazon S3, Kafka, and Microsoft SQL Server are some of the popular tools that integrate with MapD. Here's a list of all 11 tools that integrate with MapD.
Pros of MapD
Super fast, and the approach taken

MapD's Features

  • SQL
  • GPU-powered
  • column store
  • fast
  • scalable
  • interactive visualization
  • machine learning

MapD Alternatives & Comparisons

What are some alternatives to MapD?
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click.
Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.
PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
See all alternatives

MapD's Followers
24 developers follow MapD to keep up with related blogs and decisions.