What is OSGi and what are its top alternatives?
OSGi, or the Open Services Gateway initiative, is a Java framework for building modular applications. Key features include dynamic module management, service-oriented architecture, and versioning support. However, OSGi can be complex to learn and use, and it may not be suitable for small projects or those without stringent modularity requirements.
- Apache Felix: Apache Felix is a community-driven implementation of the OSGi framework. It offers features like dynamic service management, configuration support, and extensive documentation. However, it may have a steeper learning curve compared to other alternatives.
- Equinox: Equinox is the OSGi implementation used by the Eclipse IDE. It provides a powerful runtime environment for modular applications with features like pluggable transports and extensible security. However, it may be tightly coupled with the Eclipse ecosystem.
- Karaf: Apache Karaf is an OSGi-based runtime container that simplifies the deployment and management of OSGi applications. It offers features like hot deployment, dependency resolution, and remote access. However, it may add overhead for simpler applications.
- Spring Dynamic Modules: Spring Dynamic Modules provides integration between the Spring Framework and OSGi, allowing developers to build modular applications with Spring components. It offers seamless integration with Spring features but may introduce additional complexity.
- Knopflerfish: Knopflerfish is a lightweight OSGi framework that prioritizes simplicity and performance. It offers features like a small footprint, fast startup time, and comprehensive OSGi compliance. However, it may lack some advanced features found in other alternatives.
- Bnd: Bnd is a tool for building OSGi bundles and applications. It offers features like automatic dependency resolution, manifest generation, and support for various OSGi specifications. However, it may require additional tools for a complete development workflow.
- Pax Exam: Pax Exam is a testing framework for OSGi-based applications. It provides features for writing and running integration tests in OSGi environments. However, it may have a learning curve for beginners in OSGi testing.
- OSGi enRoute: OSGi enRoute is a project that aims to simplify OSGi development by providing a set of tools and best practices. It offers features like project templates, build plugins, and dependency management. However, it may limit flexibility compared to other alternatives.
- ProSyst mBS: ProSyst mBS is an OSGi-based middleware platform for building IoT and embedded applications. It offers features like remote management, firmware updates, and device provisioning. However, it may be tailored more towards specific use cases.
- Juzu: Juzu is a lightweight web framework that leverages OSGi for building modular web applications. It offers features like MVC architecture, templating support, and portlet integration. However, it may have a smaller community compared to other alternatives.
Top Alternatives to OSGi
- Spring Boot
Spring Boot makes it easy to create stand-alone, production-grade Spring based Applications that you can "just run". We take an opinionated view of the Spring platform and third-party libraries so you can get started with minimum fuss. Most Spring Boot applications need very little Spring configuration. ...
- Spring
A key element of Spring is infrastructural support at the application level: Spring focuses on the "plumbing" of enterprise applications so that teams can focus on application-level business logic, without unnecessary ties to specific deployment environments. ...
- Docker
The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...
- Apache Maven
Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Node.js
Node.js uses an event-driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-intensive real-time applications that run across distributed devices. ...
- HTML5
HTML5 is a core technology markup language of the Internet used for structuring and presenting content for the World Wide Web. As of October 2014 this is the final and complete fifth revision of the HTML standard of the World Wide Web Consortium (W3C). The previous version, HTML 4, was standardised in 1997. ...
OSGi alternatives & related posts
Spring Boot
- Powerful and handy149
- Easy setup134
- Java128
- Spring90
- Fast85
- Extensible46
- Lots of "off the shelf" functionalities37
- Cloud Solid32
- Caches well26
- Productive24
- Many receipes around for obscure features24
- Modular23
- Integrations with most other Java frameworks23
- Spring ecosystem is great22
- Auto-configuration21
- Fast Performance With Microservices21
- Community18
- Easy setup, Community Support, Solid for ERP apps17
- One-stop shop15
- Easy to parallelize14
- Cross-platform14
- Easy setup, good for build erp systems, well documented13
- Powerful 3rd party libraries and frameworks13
- Easy setup, Git Integration12
- It's so easier to start a project on spring5
- Kotlin4
- Microservice and Reactive Programming1
- The ability to integrate with the open source ecosystem1
- Heavy weight23
- Annotation ceremony18
- Java13
- Many config files needed11
- Reactive5
- Excellent tools for cloud hosting, since 5.x4
- Java 😒😒1
- Still difficult1
related Spring Boot posts
I've been studying Java for approximately six months now, and I'm considering delving into Spring Boot. Recently, I've been contemplating learning a secondary language for leisure, allocating about 20% of my study time to it. I'm particularly keen on a technology that is widely used. Consequently, I opted for Python since I'm not overly interested in client-side aspects. The decision to concurrently learn another technology stems from the limited availability of Java resources, especially at the junior level where more diverse small projects could enhance my understanding of backend development. What are your thoughts on this approach to diversifying technologies? Does it seem sensible, or would it be more beneficial for me to allocate 100% of my time to Java?
We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.
To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas
To build #Webapps we decided to use Angular 2 with RxJS
#Devops - GitHub , Travis CI , Terraform , Docker , Serverless
Spring
- Java230
- Open source157
- Great community136
- Very powerful123
- Enterprise114
- Lot of great subprojects64
- Easy setup60
- Convention , configuration, done44
- Standard40
- Love the logic31
- Good documentation13
- Dependency injection11
- Stability11
- MVC9
- Easy6
- Makes the hard stuff fun & the easy stuff automatic3
- Strong typing3
- Code maintenance2
- Best practices2
- Maven2
- Great Desgin2
- Easy Integration with Spring Security2
- Integrations with most other Java frameworks2
- Java has more support and more libraries1
- Supports vast databases1
- Large ecosystem with seamless integration1
- OracleDb integration1
- Live project1
- Draws you into its own ecosystem and bloat15
- Poor documentation4
- Verbose configuration3
- Java3
- Java is more verbose language in compare to python2
- Very difficult1
related Spring posts
Is learning Spring and Spring Boot for web apps back-end development is still relevant in 2021? Feel free to share your views with comparison to Django/Node.js/ ExpressJS or other frameworks.
Please share some good beginner resources to start learning about spring/spring boot framework to build the web apps.
I am consulting for a company that wants to move its current CubeCart e-commerce site to another PHP based platform like PrestaShop or Magento. I was interested in alternatives that utilize Node.js as the primary platform. I currently don't know PHP, but I have done full stack dev with Java, Spring, Thymeleaf, etc.. I am just unsure that learning a set of technologies not commonly used makes sense. For example, in PrestaShop, I would need to work with JavaScript better and learn PHP, Twig, and Bootstrap. It seems more cumbersome than a Node JS system, where the language syntax stays the same for the full stack. I am looking for thoughts and advice on the relevance of PHP skillset into the future AND whether the Node based e-commerce open source options can compete with Magento or Prestashop.
- Rapid integration and build up823
- Isolation692
- Open source521
- Testability and reproducibility505
- Lightweight460
- Standardization218
- Scalable185
- Upgrading / downgrading / application versions106
- Security88
- Private paas environments85
- Portability34
- Limit resource usage26
- Game changer17
- I love the way docker has changed virtualization16
- Fast14
- Concurrency12
- Docker's Compose tools8
- Easy setup6
- Fast and Portable6
- Because its fun5
- Makes shipping to production very simple4
- Highly useful3
- It's dope3
- Package the environment with the application2
- Super2
- Open source and highly configurable2
- Simplicity, isolation, resource effective2
- MacOS support FAKE2
- Its cool2
- Does a nice job hogging memory2
- Docker hub for the FTW2
- HIgh Throughput2
- Very easy to setup integrate and build2
- Asdfd0
- New versions == broken features8
- Unreliable networking6
- Documentation not always in sync6
- Moves quickly4
- Not Secure3
related Docker posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
- Dependency management138
- Necessary evil70
- I’d rather code my app, not my build60
- Publishing packaged artifacts48
- Convention over configuration43
- Modularisation18
- Consistency across builds11
- Prevents overengineering using scripting6
- Runs Tests4
- Lot of cool plugins4
- Extensible3
- Hard to customize2
- Runs on Linux2
- Runs on OS X1
- Slow incremental build1
- Inconsistent buillds1
- Undeterminisc1
- Good IDE tooling1
- Complex6
- Inconsistent buillds1
- Not many plugin-alternatives0
related Apache Maven posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.
I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).
As per my work experience and knowledge, I have chosen the followings stacks to this mission.
UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.
Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.
Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.
Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.
Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.
Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.
Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.
Happy Coding! Suggestions are welcome! :)
Thanks, Ganesa
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast899
- Light weight746
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Its everywhere12
- Future Language of The Web12
- Setup is easy12
- JavaScript is the New PHP11
- Because I love functions11
- Like it or not, JS is part of the web standard10
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Expansive community9
- For the good parts8
- Easy to hire developers8
- No need to use PHP8
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- It's fun7
- Its fun and fast7
- Popularized Class-Less Architecture & Lambdas7
- Agile, packages simple to use7
- Supports lambdas and closures7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- Hard not to use7
- Versitile7
- Nice7
- Easy to make something6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- It let's me use Babel & Typescript6
- Clojurescript5
- Everywhere5
- Scope manipulation5
- Function expressions are useful for callbacks5
- Stockholm Syndrome5
- Promise relationship5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Subskill #41
- Test21
- Easy to understand1
- Not the best1
- Easy to learn1
- Hard to learn1
- Easy to learn and test1
- Love it1
- Test1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Python
- Great libraries1.2K
- Readable code965
- Beautiful code848
- Rapid development789
- Large community692
- Open source439
- Elegant394
- Great community283
- Object oriented274
- Dynamic typing222
- Great standard library78
- Very fast62
- Functional programming56
- Easy to learn52
- Scientific computing47
- Great documentation36
- Productivity30
- Matlab alternative29
- Easy to read29
- Simple is better than complex25
- It's the way I think21
- Imperative20
- Very programmer and non-programmer friendly19
- Free19
- Powerfull language17
- Machine learning support17
- Fast and simple16
- Scripting14
- Explicit is better than implicit12
- Ease of development11
- Clear and easy and powerfull10
- Unlimited power9
- It's lean and fun to code8
- Import antigravity8
- Print "life is short, use python"7
- Python has great libraries for data processing7
- Although practicality beats purity6
- Fast coding and good for competitions6
- There should be one-- and preferably only one --obvious6
- High Documented language6
- Readability counts6
- Rapid Prototyping6
- I love snakes6
- Now is better than never6
- Flat is better than nested6
- Great for tooling6
- Great for analytics5
- Web scraping5
- Lists, tuples, dictionaries5
- Complex is better than complicated4
- Socially engaged community4
- Plotting4
- Beautiful is better than ugly4
- Easy to learn and use4
- Easy to setup and run smooth4
- Simple and easy to learn4
- Multiple Inheritence4
- CG industry needs4
- List comprehensions3
- Powerful language for AI3
- Flexible and easy3
- It is Very easy , simple and will you be love programmi3
- Many types of collections3
- If the implementation is easy to explain, it may be a g3
- If the implementation is hard to explain, it's a bad id3
- Special cases aren't special enough to break the rules3
- Pip install everything3
- No cruft3
- Generators3
- Import this3
- Can understand easily who are new to programming2
- Securit2
- Should START with this but not STICK with This2
- A-to-Z2
- Because of Netflix2
- Only one way to do it2
- Better outcome2
- Good for hacking2
- Batteries included2
- Procedural programming2
- Sexy af1
- Automation friendly1
- Slow1
- Best friend for NLP1
- Powerful0
- Keep it simple0
- Ni0
- Still divided between python 2 and python 353
- Performance impact28
- Poor syntax for anonymous functions26
- GIL22
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow12
- Indentations matter a lot8
- Not everything is expression8
- Incredibly slow7
- Explicit self parameter in methods7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Fake object-oriented programming5
- Threading5
- The "lisp style" whitespaces5
- Official documentation is unclear.5
- Hard to obfuscate5
- Circular import5
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- The benevolent-dictator-for-life quit4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Hi, I have an LMS application, currently developed in Python-Django.
It works all very well, students can view their classes and submit exams, but I have noticed that some students are sharing exam answers with other students and let's say they already have a model of the exams.
I want with the help of artificial intelligence, the exams to have different questions and in a different order for each student, what technology should I learn to develop something like this? I am a Python-Django developer but my focus is on web development, I have never touched anything from A.I.
What do you think about TensorFlow?
Please, I would appreciate all your ideas and opinions, thank you very much in advance.
Node.js
- Npm1.4K
- Javascript1.3K
- Great libraries1.1K
- High-performance1K
- Open source805
- Great for apis487
- Asynchronous477
- Great community425
- Great for realtime apps390
- Great for command line utilities296
- Websockets86
- Node Modules84
- Uber Simple69
- Great modularity59
- Allows us to reuse code in the frontend58
- Easy to start42
- Great for Data Streaming35
- Realtime32
- Awesome28
- Non blocking IO25
- Can be used as a proxy18
- High performance, open source, scalable17
- Non-blocking and modular16
- Easy and Fun15
- Easy and powerful14
- Future of BackEnd13
- Same lang as AngularJS13
- Fullstack12
- Fast11
- Scalability10
- Cross platform10
- Simple9
- Mean Stack8
- Great for webapps7
- Easy concurrency7
- Typescript6
- Fast, simple code and async6
- React6
- Friendly6
- Control everything5
- Its amazingly fast and scalable5
- Easy to use and fast and goes well with JSONdb's5
- Scalable5
- Great speed5
- Fast development5
- It's fast4
- Easy to use4
- Isomorphic coolness4
- Great community3
- Not Python3
- Sooper easy for the Backend connectivity3
- TypeScript Support3
- Blazing fast3
- Performant and fast prototyping3
- Easy to learn3
- Easy3
- Scales, fast, simple, great community, npm, express3
- One language, end-to-end3
- Less boilerplate code3
- Npm i ape-updating2
- Event Driven2
- Lovely2
- Creat for apis1
- Node0
- Bound to a single CPU46
- New framework every day45
- Lots of terrible examples on the internet40
- Asynchronous programming is the worst33
- Callback24
- Javascript19
- Dependency hell11
- Dependency based on GitHub11
- Low computational power10
- Very very Slow7
- Can block whole server easily7
- Callback functions may not fire on expected sequence7
- Breaking updates4
- Unstable4
- Unneeded over complication3
- No standard approach3
- Bad transitive dependency management1
- Can't read server session1
related Node.js posts
Needs advice on code coverage tool in Node.js/ExpressJS with External API Testing Framework
Hello community,
I have a web application with the backend developed using Node.js and Express.js. The backend server is in one directory, and I have a separate API testing framework, made using SuperTest, Mocha, and Chai, in another directory. The testing framework pings the API, retrieves responses, and performs validations.
I'm currently looking for a code coverage tool that can accurately measure the code coverage of my backend code when triggered by the API testing framework. I've tried using Istanbul and NYC with instrumented code, but the results are not as expected.
Could you please recommend a reliable code coverage tool or suggest an approach to effectively measure the code coverage of my Node.js/Express.js backend code in this setup?
I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery
For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:
Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have
GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.
MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website
- New doctype448
- Local storage389
- Canvas334
- Semantic header and footer285
- Video element240
- Geolocation121
- Form autofocus106
- Email inputs100
- Editable content85
- Application caches79
- Easy to use10
- Cleaner Code9
- Easy5
- Websockets4
- Semantical4
- Audio element3
- Content focused3
- Better3
- Modern3
- Compatible2
- Very easy to learning to HTML2
- Semantic Header and Footer, Geolocation, New Doctype2
- Portability2
- Easy to forget the tags when you're a begginner2
- Long and winding code1
related HTML5 posts
Hey guys, I need some advice on one thing. Currently, I am a fresher and know HTML5, CSS, JavaScript, PHP and, MySQL. Recently I got a client project through one of my friends and he wants me to build an E-learning Management System. Are these skills enough to build an LMS website?
Thanks in advance!! ;)
Few years ago we were building a Next.js site with a few simple forms. This required handling forms validation and submission, but instead of picking some forms library, we went with plain JavaScript and constraint validation API in HTML5. This shaved off a few KBs of dependencies and gave us full control over the validation behavior and look. I describe this approach, with its pros and cons, in a blog post.