Manas Realtime — Enabling Changes to Be Searchable in a Blink of an Eye

1,470
Pinterest
Pinterest's profile on StackShare is not actively maintained, so the information here may be out of date.

By Michael Mi | Tech Lead, Core Product Serving Infra


Manas, Pinterest’s in-house search engine, is a generic information retrieval platform. As we discussed in our previous post, Manas was designed as a search framework with high performance, availability, and scalability. Today, Manas powers search for the majority of Pinterest products, including Ads, Search, Homefeed, Related Pins, Visual, and Shopping.

One of the key metrics for a search system is the indexing latency, which is the time taken to update the search index to reflect changes. As we keep growing the system capabilities and onboarding new use cases, the ability to instantly index new documents has become more important. Manas already supports incremental indexing, which is able to provide indexing latency within the order of tens of minutes. Unfortunately, this can’t meet our growing business requirements from Ads and following feeds. We decided to build a new module within Manas to further reduce indexing latency to a fraction of a second.

In this blog post we describe the architecture of the system and its key challenges, and we provide details about the tradeoffs we made.

Challenges

New requirements come with new challenges. Here are several of the major challenges we faced.

Indexing Latency

The tiny batch approach, aka near-realtime, is the most popular choice for open source projects like Lucene, Vespa, etc. With this approach, the newly written document is not searchable until index commit is called. As a result, you need to make a tradeoff between indexing latency and throughput. Unfortunately, we can’t leverage this approach to reduce indexing latency to the order of seconds.

Index Refresh Ability

One of the drawbacks of realtime serving is the lack of index refresh agility. For a batch pipeline, it is trivial to rerun the indexing job to pick up all schema changes at once. However, when it comes to the realtime serving pipeline, an efficient index refresh support becomes complicated.

Scale-up for Constantly Changing Data

To avoid over-provisioning, auto-scaling was employed to adjust replicas based on the actual query load. If the index is immutable, it is relatively easy to bring up new replicas: you just need to copy the index to new nodes, and you are done. All of the difficulty lies in handling the constantly changing index: how to ensure that all replicas end up with the same index?

Error Recovery

Manas is a data-intensive service where each host may serve an index of up to several hundred GBs. Manas is also a stateful system; a bad binary could introduce data issues that rollbacks would not be able to fix. We needed to build a system that supports both fault tolerance and error recovery so that it is possible to recover from both binary bugs and data corruption.

Moving from Static to Realtime

Let’s take a brief look at the differences between conventional static serving and realtime serving. As shown in the above diagram, the major work for realtime serving is moving the indexing pipeline from offline to online.

For static serving, the indexes are generated offline with a batch workflow, and then they are copied to leaf for online serving. With batch workflows, due to the high framework overhead, it is barely possible to build a servable index within a fraction of a second. For realtime serving, instead of using an offline workflow, all writes are handled on the fly within the service. In addition, the realtime indexing pipeline handles writes in a way that generates the same index format as the static indexing pipeline, allowing us to reuse the entire index read logic. With this in mind, let’s continue the journey of understanding how realtime serving works.

Indexing Interface

Instead of directly using RPC, Kafka was employed as our high write throughput stream. Leaf servers continuously pull mutations to build incremental indexes. Turns out this decision dramatically simplified our system in multiple ways:

  • Data replications and write failures are taken care of by Kafka.
  • With the seek back ability, the Kafka queue also serves as WAL.
  • With a strict ordering guarantee in each partition, the system can blindly apply deletions without needing to worry about correctness.

Architecture Overview

Since the serving logic can be reused with a shared index format, we will focus on the indexing data flow.

Essentially, realtime Manas leaf is a LSM engine, which converts random IOs writes into sequential IOs and enables efficient serving for both read amplification and write amplification applications. As shown below, the whole indexing process consists of three critical steps. Let’s discuss them one by one.

Realtime Segment Build

We introduced realtime segments except for the existing static segments. As shown above, there are two types of realtime segments in the system: active realtime segments, and sealed realtime segments.

  • Active realtime segment, the only mutable component, is used to accumulate mutations (adds/deletes) pulled from Kafka. It’s worth pointing out that after a document is added into a realtime segment, it becomes searchable immediately after the document level commit.
  • Once the active realtime segment reaches a configurable threshold, it is sealed, becomes immutable, and is put into a flush queue. Meanwhile, a new active realtime segment is created to continue accumulating mutations.

In the case of a service restart, the realtime segments can be reconstructed by replaying messages from Kafka.

Index Flush

Index flush is the process of persisting in-memory data from a realtime segment into a compact index file. A flush is automatically triggered when a realtime segment gets sealed, and a flush can also be manually triggered using a debug command.

The index flush is a beneficial operator that guarantees data persistency so that we don’t need to reconstruct in-memory segments from scratch during restart. In addition, flushing reduces a segment’s memory footprint and improves serving efficiency with a compact immutable index.

Index Compaction

Over time, multiple generated small segments hurt serving performance. To overcome this, we introduced a background compaction thread to merge small segments into bigger ones. Since deletion operators just mark documents as deleted instead of physically deleting them, the compaction thread also persists these deleted/expired documents.

After each flush and compaction operator, a new index manifest consisting of all the static segments would be generated. Kafka offsets, used as checkpoints, are also added into each manifest. Based on the checkpoints, the service knows where to consume messages after a restart.

Detailed Design

In this section, we will cover several key areas in more detail. Let’s start with the most interesting part, the concurrency model.

Concurrency Model

The realtime segment, as aforementioned, is the only mutable component where we need to handle both read and write simultaneously. Unfortunately, the near-realtime approach employed by open source projects can’t meet our business requirement. Instead, we chose a different approach that enables us to commit a document immediately after adding into the index without waiting for an index flush. For the sake of performance, we employed a lock-free technique for data structures tailored to our usage. Now let’s open the box!

Realtime Segment

Each realtime segment consists of an inverted index and a forward index. The inverted index is logically a mapping from term to posting list, a list of document ids, used for retrieval. Meanwhile, the forward index stores an arbitrary binary blob used for full scoring and data fetching. Let’s only focus on realtime inverted index part, which is more interesting and challenging as compared to the forward index.

At a high level, the major difference between a realtime segment and a static segment is mutability. For the realtime inverted index, the map from term to posting list needs to be a concurrent one. This is well supported by open sources like folly’s concurrent hashmap. What we care about more is the internal representation for the posting list, which can support our concurrency model in an efficient way.

Append-only Vector

Usually, it is more efficient and easier to reason about a single-writer, multiple-readers model. We chose a similar data model as HDFS with an append-only lock-free data structure. Let’s take a closer look at how the reader and the writer interact with each other.

  • Writer appends doc id into the vector, then commits size to make it accessible to readers
  • Reader takes a snapshot up till committed size before accessing data

In order to avoid memory copying overhead as the posting list grows, internally we manage data as a list of buckets. We just need to add a new bucket without touching old ones when we run out of capacity. In addition, usually search engines use skip lists to speed up the skip operator. Thanks to this format, it is convenient to support a single-level skip list, which is good enough for realtime inverted index since the size of it is usually small.

Document Atomicity

Now with an append-only vector, we are able to achieve atomicity for a single posting list. However, a document can contain a list of terms, and we may end up returning unexpected documents with a partially updated index. To address this potential issue, we introduced a document level commit to guarantee document atomicity. In the serving pipeline, an additional filter is used to make sure only committed documents are returned.

Speaking of document atomicity, document updating is another scenario worth mentioning here. For each document update, we deliberately convert it to two operators: adding the new document, then deleting the old one from the index. Although each operator is atomic, together we can’t guarantee atomicity. We think it is ok to either return the old version or the new version in a very short time window, but nevertheless, we added dedupe logic into the serving pipeline to filter out the old one when both are returned.

Writes Scaling

One question that naturally comes up is that if your data structures only support the single-write and multiple-reads concurrent model, what if a single thread can’t handle all the writes in time? It does not seem like a good idea to blindly add more shards just to scale write throughput. While this is a valid concern, it has already been taken care of in our design.

The single-write and multiple-reads concurrent model used for data structures doesn’t mean we are not able to use multiple threads for writes. We planned to use the term-shard strategy to support writes with multiple threads. As shown in the above diagram, for a given document with a list of terms, each term would be always mapped to the fixed thread so that all data structures tailored for single-write and multiple-reads can be reused directly without any limitations.

Index Refresh

Index refresh ability is a critical feature for our products, enabling quick turnaround and improving dev velocity. Generally, two approaches can be used to refresh the index in an efficient way, backfilling on the fly and reinstating from the offline built index, respectively.

Backfilling Index

We provide the ability to backfill documents at a reasonable throughput. To avoid impacting production freshness, we need a separate stream for backfill traffic with a lower priority. As a result, it is possible that two versions of a document are present in both streams and the old version overrides the new one. To overcome this, we need to introduce a versioning mechanism and a conflict resolver in the realtime indexing pipeline to decide which one is more fresh.

Reinstating from Offline Built Index

Sometimes, backfilling at a given speed for a full dataset would be too time-consuming. Another quicker index refresh approach we support is building an index offline, and then reinstating from it, with a synchronization mechanism between the offline built index and Kafka stream.

Failover and Auto-scaling

From time to time, we need to bring up new instances for various reasons, like failover and auto-scaling, etc. For static serving, it is easy to start a new instance with an immutable index downloaded from the index store. However, it becomes complicated for realtime serving with a constantly changing index. How do we ensure that new instances have the same copy of the index as others eventually?

We decided to use leader-based replication, as shown in the above diagram. Our process would look like this:

  1. The leader periodically takes a new snapshot and uploads it to the durable index store
  2. New instances download the latest snapshot, by default, from the index store
  3. New instances resume consuming messages from Kafka based on the checkpoint from the snapshot index
  4. New instances start serving traffic once they have caught up

There are some key points in the design worth pointing out:

Leader Election

The only responsibility of the leader is to take snapshots and upload the index periodically. This means we can afford to have no leader or have multiple leaders for a short period of time, up to hours. Therefore, we have some flexibility in choosing a leader election algorithm. For simplicity, we chose to use our cluster maintenance job to select a leader statically, where we periodically check if we have a good leader.

Snapshot Upload

Usually, the new instance just connects to the leader to download the latest snapshot. In this approach, the snapshot downloading from new instances would potentially overload the leader, leading to cascading failures. Instead, we chose to upload snapshots periodically to the index store, trading space and freshness for stability. In addition, the uploaded snapshots are useful for error recovery, which will be covered shortly.

Error Recovery

As aforementioned, error recovery is another challenge for realtime serving system. There are some specific scenarios involving data corruption we need to handle.

Input Data Corruption

We use Kafka as our input write stream; unfortunately, those messages are immutable due to the fact that a producer can just append messages to it but can’t change content for existing ones. This means once the data corruption is introduced into Kafka messages, it is permanent. Thanks to the uploaded snapshots, we have the ability to rewind our index to the point without corruption, skip corrupted messages, and then consume new messages with the fix.

Binary Bugs Caused Data Corruption

Although we have a mature indexing validation pipeline for static clusters to guarantee no issues with the new index and the new binary before swapping in the new version, it is still possible that some bugs sneak into production. Fortunately, we can fix the issue by rolling back the binary or index. It becomes much harder for realtime serving where rolling back the binary can’t roll back the errors in the index. Using our snapshot uploading mechanism, we are able to rollback the binary together with a rewinded index and then replay messages from Kafka to fix errors in the index.

What’s next

As more scenarios are onboarded to Manas, we need to keep improving the system’s efficiency, scalability, and capability. Some interesting projects in our roadmap are as follows:

  • Cohosting static and realtime clusters to simplify our serving stack
  • Optimizing the system to support a large dataset
  • Building a generic embedding based retrieval to power advanced scenarios

Acknowledgments: This post summarizes several quarter’s work that involved multiple teams. Thanks to Tim Koh, Haibin Xie, George Wu, Sheng Chen, Jiacheng Hong and Zheng Liu for their countless contributions. Thanks to Mukund Narasimhan, Angela Sheu, Ang Xu, Chengcheng Hu and Dumitru Daniliuc for many meaningful discussions and feedbacks. Thanks to Roger Wang and Randall Keller for the great leadership.

Pinterest
Pinterest's profile on StackShare is not actively maintained, so the information here may be out of date.
Tools mentioned in article
Open jobs at Pinterest
Sr. Staff Software Engineer, Ads ML I...
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>Pinterest is one of the fastest growing online advertising platforms. Continued success depends on the machine-learning systems, which crunch thousands of signals in a few hundred milliseconds, to identify the most relevant ads to show to pinners. You’ll join a talented team with high impact, which designs high-performance and efficient ML systems, in order to power the most critical and revenue-generating models at Pinterest.</p> <p><strong>What you’ll do</strong></p> <ul> <li>Being the technical leader of the Ads ML foundation evolution movement to 2x Pinterest revenue and 5x ad performance in next 3 years.</li> <li>Opportunities to use cutting edge ML technologies including GPU and LLMs to empower 100x bigger models in next 3 years.&nbsp;</li> <li>Tons of ambiguous problems and you will be tasked with building 0 to 1 solutions for all of them.</li> </ul> <p><strong>What we’re looking for:</strong></p> <ul> <li>BS (or higher) degree in Computer Science, or a related field.</li> <li>10+ years of relevant industry experience in leading the design of large scale &amp; production ML infra systems.</li> <li>Deep knowledge with at least one state-of-art programming language (Java, C++, Python).&nbsp;</li> <li>Deep knowledge with building distributed systems or recommendation infrastructure</li> <li>Hands-on experience with at least one modeling framework (Pytorch or Tensorflow).&nbsp;</li> <li>Hands-on experience with model / hardware accelerator libraries (Cuda, Quantization)</li> <li>Strong communicator and collaborative team player.</li> </ul><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$135,150</span><span class="divider">&mdash;</span><span>$278,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Senior Staff Machine Learning Enginee...
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>We are looking for a highly motivated and experienced Machine Learning Engineer to join our team and help us shape the future of machine learning at Pinterest. In this role, you will tackle new challenges in machine learning that will have a real impact on the way people discover and interact with the world around them.&nbsp; You will collaborate with a world-class team of research scientists and engineers to develop new machine learning algorithms, systems, and applications that will bring step-function impact to the business metrics (recent publications <a href="https://arxiv.org/abs/2205.04507">1</a>, <a href="https://dl.acm.org/doi/abs/10.1145/3523227.3547394">2</a>, <a href="https://arxiv.org/abs/2306.00248">3</a>).&nbsp; You will also have the opportunity to work on a variety of exciting projects in the following areas:&nbsp;</p> <ul> <li>representation learning</li> <li>recommender systems</li> <li>graph neural network</li> <li>natural language processing (NLP)</li> <li>inclusive AI</li> <li>reinforcement learning</li> <li>user modeling</li> </ul> <p>You will also have the opportunity to mentor junior researchers and collaborate with external researchers on cutting-edge projects.&nbsp;&nbsp;</p> <p><strong>What you'll do:&nbsp;</strong></p> <ul> <li>Lead cutting-edge research in machine learning and collaborate with other engineering teams to adopt the innovations into Pinterest problems</li> <li>Collect, analyze, and synthesize findings from data and build intelligent data-driven model</li> <li>Scope and independently solve moderately complex problems; write clean, efficient, and sustainable code</li> <li>Use machine learning, natural language processing, and graph analysis to solve modeling and ranking problems across growth, discovery, ads and search</li> </ul> <p><strong>What we're looking for:</strong></p> <ul> <li>Mastery of at least one systems languages (Java, C++, Python) or one ML framework (Pytorch, Tensorflow, MLFlow)</li> <li>Experience in research and in solving analytical problems</li> <li>Strong communicator and team player. Being able to find solutions for open-ended problems</li> <li>8+ years working experience in the r&amp;d or engineering teams that build large-scale ML-driven projects</li> <li>3+ years experience leading cross-team engineering efforts that improves user experience in products</li> <li>MS/PhD in Computer Science, ML, NLP, Statistics, Information Sciences or related field</li> </ul> <p><strong>Desired skills:</strong></p> <ul> <li>Strong publication track record and industry experience in shipping machine learning solutions for large-scale challenges&nbsp;</li> <li>Cross-functional collaborator and strong communicator</li> <li>Comfortable solving ambiguous problems and adapting to a dynamic environment</li> </ul> <p>This position is not eligible for relocation assistance.</p> <p>#LI-SA1</p> <p>#LI-REMOTE</p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$158,950</span><span class="divider">&mdash;</span><span>$327,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Staff Software Engineer, ML Training
San Francisco, CA, US; , CA, US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>The ML Platform team provides foundational tools and infrastructure used by hundreds of ML engineers across Pinterest, including recommendations, ads, visual search, growth/notifications, trust and safety. We aim to ensure that ML systems are healthy (production-grade quality) and fast (for modelers to iterate upon).</p> <p>We are seeking a highly skilled and experienced Staff Software Engineer to join our ML Training Infrastructure team and lead the technical strategy. The ML Training Infrastructure team builds platforms and tools for large-scale training and inference, model lifecycle management, and deployment of models across Pinterest. ML workloads are increasingly large, complex, interdependent and the efficient use of ML accelerators is critical to our success. We work on various efforts related to adoption, efficiency, performance, algorithms, UX and core infrastructure to enable the scheduling of ML workloads.</p> <p>You’ll be part of the ML Platform team in Data Engineering, which aims to ensure healthy and fast ML in all of the 40+ ML use cases across Pinterest.</p> <p><strong>What you’ll do:</strong></p> <ul> <li>Implement cost effective and scalable solutions to allow ML engineers to scale their ML training and inference workloads on compute platforms like Kubernetes.</li> <li>Lead and contribute to key projects; rolling out GPU sharing via MIGs and MPS , intelligent resource management, capacity planning, fault tolerant training.</li> <li>Lead the technical strategy and set the multi-year roadmap for ML Training Infrastructure that includes ML Compute and ML Developer frameworks like PyTorch, Ray and Jupyter.</li> <li>Collaborate with internal clients, ML engineers, and data scientists to address their concerns regarding ML development velocity and enable the successful implementation of customer use cases.</li> <li>Forge strong partnerships with tech leaders in the Data and Infra organizations to develop a comprehensive technical roadmap that spans across multiple teams.</li> <li>Mentor engineers within the team and demonstrate technical leadership.</li> </ul> <p><strong>What we’re looking for:</strong></p> <ul> <li>7+ years of experience in software engineering and machine learning, with a focus on building and maintaining ML infrastructure or Batch Compute infrastructure like YARN/Kubernetes/Mesos.</li> <li>Technical leadership experience, devising multi-quarter technical strategies and driving them to success.</li> <li>Strong understanding of High Performance Computing and/or and parallel computing.</li> <li>Ability to drive cross-team projects; Ability to understand our internal customers (ML practitioners and Data Scientists), their common usage patterns and pain points.</li> <li>Strong experience in Python and/or experience with other programming languages such as C++ and Java.</li> <li>Experience with GPU programming, containerization, orchestration technologies is a plus.</li> <li>Bonus point for experience working with cloud data processing technologies (Apache Spark, Ray, Dask, Flink, etc.) and ML frameworks such as PyTorch.</li> </ul> <p>This position is not eligible for relocation assistance.</p> <p>#LI-REMOTE</p> <p><span data-sheets-value="{&quot;1&quot;:2,&quot;2&quot;:&quot;#LI-AH2&quot;}" data-sheets-userformat="{&quot;2&quot;:14464,&quot;10&quot;:2,&quot;14&quot;:{&quot;1&quot;:2,&quot;2&quot;:0},&quot;15&quot;:&quot;Helvetica Neue&quot;,&quot;16&quot;:12}">#LI-AH2</span></p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$135,150</span><span class="divider">&mdash;</span><span>$278,000 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
Distinguished Engineer, Frontend
San Francisco, CA, US; , US
<div class="content-intro"><p><strong>About Pinterest</strong><span style="font-weight: 400;">:&nbsp;&nbsp;</span></p> <p>Millions of people across the world come to Pinterest to find new ideas every day. It’s where they get inspiration, dream about new possibilities and plan for what matters most. Our mission is to help those people find their inspiration and create a life they love.&nbsp;In your role, you’ll be challenged to take on work that upholds this mission and pushes Pinterest forward. You’ll grow as a person and leader in your field, all the while helping&nbsp;Pinners&nbsp;make their lives better in the positive corner of the internet.</p> <p>Creating a life you love also means finding a career that celebrates the unique perspectives and experiences that you bring. As you read through the expectations of the position, consider how your skills and experiences may complement the responsibilities of the role. We encourage you to think through your relevant and transferable skills from prior experiences.</p> <p><em>Our new progressive work model is called PinFlex, a term that’s uniquely Pinterest to describe our flexible approach to living and working. Visit our </em><a href="https://www.pinterestcareers.com/pinflex/" target="_blank"><em><u>PinFlex</u></em></a><em> landing page to learn more.&nbsp;</em></p></div><p>As a Distinguished Engineer at Pinterest, you will play a pivotal role in shaping the technical direction of our platform, driving innovation, and providing leadership to our engineering teams. You'll be at the forefront of developing cutting-edge solutions that impact millions of users.</p> <p><strong>What you’ll do:</strong></p> <ul> <li>Advise executive leadership on highly complex, multi-faceted aspects of the business, with technological and cross-organizational impact.</li> <li>Serve as a technical mentor and role model for engineering teams, fostering a culture of excellence.</li> <li>Develop cutting-edge innovations with global impact on the business and anticipate future technological opportunities.</li> <li>Serve as strategist to translate ideas and innovations into outcomes, influencing and driving objectives across Pinterest.</li> <li>Embed systems and processes that develop and connect teams across Pinterest to harness the diversity of thought, experience, and backgrounds of Pinployees.</li> <li>Integrate velocity within Pinterest; mobilizing the organization by removing obstacles and enabling teams to focus on achieving results for the most important initiatives.</li> </ul> <p>&nbsp;<strong>What we’re looking for:</strong>:</p> <ul> <li>Proven experience as a distinguished engineer, fellow, or similar role in a technology company.</li> <li>Recognized as a pioneer and renowned technical authority within the industry, often globally, requiring comprehensive expertise in leading-edge theories and technologies.</li> <li>Deep technical expertise and thought leadership that helps accelerate adoption of the very best engineering practices, while maintaining knowledge on industry innovations, trends and practices.</li> <li>Ability to effectively communicate with and influence key stakeholders across the company, at all levels of the organization.</li> <li>Experience partnering with cross-functional project teams on initiatives with significant global impact.</li> <li>Outstanding problem-solving and analytical skills.</li> </ul> <p>&nbsp;</p> <p>This position is not eligible for relocation assistance.</p> <p>&nbsp;</p> <p>#LI-REMOTE</p> <p>#LI-NB1</p><div class="content-pay-transparency"><div class="pay-input"><div class="description"><p>At Pinterest we believe the workplace should be equitable, inclusive, and inspiring for every employee. In an effort to provide greater transparency, we are sharing the base salary range for this position. The position is also eligible for equity. Final salary is based on a number of factors including location, travel, relevant prior experience, or particular skills and expertise.</p> <p><em><span style="font-weight: 400;">Information regarding the culture at Pinterest and benefits available for this position can be found <a href="https://www.pinterestcareers.com/pinterest-life/" target="_blank">here</a>.</span></em></p></div><div class="title">US based applicants only</div><div class="pay-range"><span>$242,029</span><span class="divider">&mdash;</span><span>$498,321 USD</span></div></div></div><div class="content-conclusion"><p><strong>Our Commitment to Diversity:</strong></p> <p>Pinterest is an equal opportunity employer and makes employment decisions on the basis of merit. We want to have the best qualified people in every job. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, protected veteran status, or any other characteristic under federal, state, or local law. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. If you require an accommodation during the job application process, please notify&nbsp;<a href="mailto:accessibility@pinterest.com">accessibility@pinterest.com</a>&nbsp;for support.</p></div>
You may also like