What is Shinken and what are its top alternatives?
Shinken is an open-source monitoring tool designed to provide an advanced and flexible monitoring solution for IT infrastructures. Key features of Shinken include high scalability, distributed architecture, auto-discovery, integration with various databases, and a web-based user interface. However, Shinken has limitations in terms of complexity in setting up and configuring, lack of official documentation, and limited community support.
- Icinga: Icinga is an open-source monitoring tool that offers strong compatibility with Nagios configurations, a user-friendly web interface, support for various plugins, and integration with popular IT automation tools. Pros: Active community support, easy to use, and extensive plugin ecosystem. Cons: Steeper learning curve compared to Shinken.
- Zabbix: Zabbix is a mature and feature-rich monitoring solution known for its auto-discovery, flexible alerting, and scalability. It offers support for various databases and customizable dashboards. Pros: All-in-one solution, powerful notifications, and detailed reporting. Cons: Complex initial setup and configuration.
- Prometheus: Prometheus is a popular open-source monitoring and alerting toolkit built for reliability and scalability. It provides a multi-dimensional data model, powerful query language, and native support for Kubernetes monitoring. Pros: Highly scalable, dynamic alerting, and efficient data model. Cons: No built-in auto-discovery mechanism.
- Nagios XI: Nagios XI is a commercial monitoring solution based on Nagios Core, offering additional features such as a customizable dashboard, advanced graphs, and configuration wizards. Pros: Enterprise-level support, easy to deploy, and extensive monitoring capabilities. Cons: Cost associated with the enterprise version.
- Netdata: Netdata is a real-time performance monitoring tool that provides comprehensive insights into system health and performance metrics. It offers a web-based dashboard, lightweight architecture, and support for a wide range of systems. Pros: Real-time monitoring, low resource consumption, and easy installation. Cons: Limited historical data retention.
- Observium: Observium is a network monitoring platform that specializes in monitoring and visualizing network performance and availability. It supports automatic network discovery, detailed device information, and customizable alerting. Pros: Network-specific monitoring features, user-friendly interface, and multi-tenant support. Cons: Limited support for non-network devices.
- Opsview: Opsview is a centralized IT monitoring platform that offers features such as customizable dashboards, advanced reporting, and integration with popular IT tools. It provides support for cloud, virtual, and containerized environments. Pros: Comprehensive monitoring capabilities, flexible deployment options, and extensive integrations. Cons: Cost associated with enterprise features.
- Check_MK: Check_MK is an open-source monitoring solution that focuses on simplicity and efficiency. It provides a monitoring engine, a powerful graphing and visualization tool, and support for automation through plugins. Pros: Easy to set up and configure, intuitive user interface, and strong automation capabilities. Cons: Limited scalability for massive environments.
- Zenoss: Zenoss is an enterprise-grade monitoring platform that offers unified monitoring for IT operations, cloud infrastructure, and applications. It provides features such as dynamic service modeling, event correlation, and integration with DevOps tools. Pros: End-to-end monitoring capabilities, advanced analytics, and scalable architecture. Cons: Complex setup and learning curve.
- LibreNMS: LibreNMS is an open-source network monitoring tool that focuses on simplicity and ease of use. It offers automatic device discovery, real-time alerts, and support for a wide range of network hardware and vendors. Pros: Lightweight and efficient, active community support, and regular updates. Cons: Limited support for non-network devices.
Top Alternatives to Shinken
- Zabbix
Zabbix is a mature and effortless enterprise-class open source monitoring solution for network monitoring and application monitoring of millions of metrics. ...
- Icinga
It monitors availability and performance, gives you simple access to relevant data and raises alerts to keep you in the loop. It was originally created as a fork of the Nagios system monitoring application. ...
- Nagios
Nagios is a host/service/network monitoring program written in C and released under the GNU General Public License. ...
- Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. ...
- Centreon
It is a network, system, applicative supervision and monitoring tool. It is one of the most flexible and powerful monitoring softwares on the market; it is absolutely free and Open Souce. ...
- Sensu
Sensu is the future-proof solution for multi-cloud monitoring at scale. The Sensu monitoring event pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their multi-cloud environments. ...
- JavaScript
JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles. ...
- Git
Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency. ...
Shinken alternatives & related posts
Zabbix
- Free21
- Alerts9
- Service/node/network discovery5
- Templates5
- Base metrics from the box4
- Multi-dashboards3
- SMS/Email/Messenger alerts3
- Grafana plugin available2
- Supports Graphs ans screens2
- Support proxies (for monitoring remote branches)2
- Perform website checking (response time, loading, ...)1
- API available for creating own apps1
- Templates free available (Zabbix Share)1
- Works with multiple databases1
- Advanced integrations1
- Supports multiple protocols/agents1
- Complete Logs Report1
- Open source1
- Supports large variety of Operating Systems1
- Supports JMX (Java, Tomcat, Jboss, ...)1
- The UI is in PHP5
- Puppet module is sluggish2
related Zabbix posts
My team is divided on using Centreon or Zabbix for enterprise monitoring and alert automation. Can someone let us know which one is better? There is one more tool called Datadog that we are using for cloud assets. Of course, Datadog presents us with huge bills. So we want to have a comparative study. Suggestions and advice are welcome. Thanks!
I am looking for an easy to set up and use monitoring solution for my servers and network infrastructure. What are the main differences between Checkmk and Zabbix? What would you recommend and why?
related Icinga posts
One size definitely doesn’t fit all when it comes to open source monitoring solutions, and executing generally understood best practices in the context of unique distributed systems presents all sorts of problems. Megan Anctil, a senior engineer on the Technical Operations team at Slack gave a talk at an O’Reilly Velocity Conference sharing pain points and lessons learned at wrangling known technologies such as Icinga, Graphite, Grafana, and the Elastic Stack to best fit the company’s use cases.
At the time, Slack used a few well-known monitoring tools since it’s Technical Operations team wasn’t large enough to build an in-house solution for all of these. Nor did the team think it’s sustainable to throw money at the problem, given the volume of information processed and the not-insignificant price and rigidity of many vendor solutions. With thousands of servers across multiple regions and millions of metrics and documents being processed and indexed per second, the team had to figure out how to scale these technologies to fit Slack’s needs.
On the backend, they experimented with multiple clusters in both Graphite and ELK, distributed Icinga nodes, and more. At the same time, they’ve tried to build usability into Grafana that reflects the team’s mental models of the system and have found ways to make alerts from Icinga more insightful and actionable.
Nagios
- It just works53
- The standard28
- Customizable12
- The Most flexible monitoring system8
- Huge stack of free checks/plugins to choose from1
related Nagios posts
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
I am new to DevOps and looking for training in DevOps. Some institutes are offering Nagios while some Prometheus in their syllabus. Please suggest which one is being used in the industry and which one should I learn.
Prometheus
- Powerful easy to use monitoring47
- Flexible query language38
- Dimensional data model32
- Alerts27
- Active and responsive community23
- Extensive integrations22
- Easy to setup19
- Beautiful Model and Query language12
- Easy to extend7
- Nice6
- Written in Go3
- Good for experimentation2
- Easy for monitoring1
- Just for metrics12
- Bad UI6
- Needs monitoring to access metrics endpoints6
- Not easy to configure and use4
- Supports only active agents3
- Written in Go2
- TLS is quite difficult to understand2
- Requires multiple applications and tools2
- Single point of failure1
related Prometheus posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
related Centreon posts
My team is divided on using Centreon or Zabbix for enterprise monitoring and alert automation. Can someone let us know which one is better? There is one more tool called Datadog that we are using for cloud assets. Of course, Datadog presents us with huge bills. So we want to have a comparative study. Suggestions and advice are welcome. Thanks!
- Support for almost anything13
- Easy setup11
- Message routing9
- Devs can code their own checks7
- Ease of use5
- Price4
- Nagios plugin compatibility3
- Easy configuration, scales well and performance is good3
- Written in Go1
- Plugins1
- Written in Go1
related Sensu posts
JavaScript
- Can be used on frontend/backend1.7K
- It's everywhere1.5K
- Lots of great frameworks1.2K
- Fast897
- Light weight745
- Flexible425
- You can't get a device today that doesn't run js392
- Non-blocking i/o286
- Ubiquitousness237
- Expressive191
- Extended functionality to web pages55
- Relatively easy language49
- Executed on the client side46
- Relatively fast to the end user30
- Pure Javascript25
- Functional programming21
- Async15
- Full-stack13
- Setup is easy12
- Its everywhere12
- Future Language of The Web12
- Because I love functions11
- JavaScript is the New PHP11
- Like it or not, JS is part of the web standard10
- Expansive community9
- Everyone use it9
- Can be used in backend, frontend and DB9
- Easy9
- Most Popular Language in the World8
- Powerful8
- Can be used both as frontend and backend as well8
- For the good parts8
- No need to use PHP8
- Easy to hire developers8
- Agile, packages simple to use7
- Love-hate relationship7
- Photoshop has 3 JS runtimes built in7
- Evolution of C7
- It's fun7
- Hard not to use7
- Versitile7
- Its fun and fast7
- Nice7
- Popularized Class-Less Architecture & Lambdas7
- Supports lambdas and closures7
- It let's me use Babel & Typescript6
- Can be used on frontend/backend/Mobile/create PRO Ui6
- 1.6K Can be used on frontend/backend6
- Client side JS uses the visitors CPU to save Server Res6
- Easy to make something6
- Clojurescript5
- Promise relationship5
- Stockholm Syndrome5
- Function expressions are useful for callbacks5
- Scope manipulation5
- Everywhere5
- Client processing5
- What to add5
- Because it is so simple and lightweight4
- Only Programming language on browser4
- Test1
- Hard to learn1
- Test21
- Not the best1
- Easy to understand1
- Subskill #41
- Easy to learn1
- Hard 彤0
- A constant moving target, too much churn22
- Horribly inconsistent20
- Javascript is the New PHP15
- No ability to monitor memory utilitization9
- Shows Zero output in case of ANY error8
- Thinks strange results are better than errors7
- Can be ugly6
- No GitHub3
- Slow2
- HORRIBLE DOCUMENTS, faulty code, repo has bugs0
related JavaScript posts
Oof. I have truly hated JavaScript for a long time. Like, for over twenty years now. Like, since the Clinton administration. It's always been a nightmare to deal with all of the aspects of that silly language.
But wowza, things have changed. Tooling is just way, way better. I'm primarily web-oriented, and using React and Apollo together the past few years really opened my eyes to building rich apps. And I deeply apologize for using the phrase rich apps; I don't think I've ever said such Enterprisey words before.
But yeah, things are different now. I still love Rails, and still use it for a lot of apps I build. But it's that silly rich apps phrase that's the problem. Users have way more comprehensive expectations than they did even five years ago, and the JS community does a good job at building tools and tech that tackle the problems of making heavy, complicated UI and frontend work.
Obviously there's a lot of things happening here, so just saying "JavaScript isn't terrible" might encompass a huge amount of libraries and frameworks. But if you're like me, yeah, give things another shot- I'm somehow not hating on JavaScript anymore and... gulp... I kinda love it.
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
- Distributed version control system1.4K
- Efficient branching and merging1.1K
- Fast959
- Open source845
- Better than svn726
- Great command-line application368
- Simple306
- Free291
- Easy to use232
- Does not require server222
- Distributed27
- Small & Fast22
- Feature based workflow18
- Staging Area15
- Most wide-spread VSC13
- Role-based codelines11
- Disposable Experimentation11
- Frictionless Context Switching7
- Data Assurance6
- Efficient5
- Just awesome4
- Github integration3
- Easy branching and merging3
- Compatible2
- Flexible2
- Possible to lose history and commits2
- Rebase supported natively; reflog; access to plumbing1
- Light1
- Team Integration1
- Fast, scalable, distributed revision control system1
- Easy1
- Flexible, easy, Safe, and fast1
- CLI is great, but the GUI tools are awesome1
- It's what you do1
- Phinx0
- Hard to learn16
- Inconsistent command line interface11
- Easy to lose uncommitted work9
- Worst documentation ever possibly made7
- Awful merge handling5
- Unexistent preventive security flows3
- Rebase hell3
- When --force is disabled, cannot rebase2
- Ironically even die-hard supporters screw up badly2
- Doesn't scale for big data1
related Git posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.