StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data As A Service
  5. Airflow vs Amazon Redshift

Airflow vs Amazon Redshift

OverviewDecisionsComparisonAlternatives

Overview

Amazon Redshift
Amazon Redshift
Stacks1.5K
Followers1.4K
Votes108
Airflow
Airflow
Stacks1.7K
Followers2.8K
Votes128

Airflow vs Amazon Redshift: What are the differences?

Introduction

This markdown code provides a comparison between Airflow and Amazon Redshift, highlighting the key differences between the two.

  1. Scalability: Airflow is a scalable workflow management platform that allows users to create, schedule, and monitor complex workflows. It provides the flexibility to scale horizontally by running multiple workers in parallel. On the other hand, Amazon Redshift is a scalable cloud data warehouse that allows users to analyze large amounts of data. It can handle petabytes of data and supports thousands of concurrent queries.

  2. Functionality: Airflow provides a comprehensive set of tools and features for managing workflows, including scheduling, dependency tracking, and monitoring. It is designed for orchestrating complex data pipelines and can integrate with a wide range of external systems. In contrast, Amazon Redshift is a data warehousing service that is specifically optimized for data analytics. It enables users to run complex queries on large datasets and provides advanced analytics capabilities, such as machine learning integration and data visualizations.

  3. Data Storage: Airflow does not provide any data storage capabilities by default. It is typically used to coordinate and schedule data processing tasks that operate on external data sources. On the other hand, Amazon Redshift is a fully managed data warehousing service that includes built-in data storage capabilities. It uses columnar storage to efficiently store and query large datasets.

  4. Data Processing: Airflow can be used to schedule and run data processing tasks on various platforms, such as Hadoop, Spark, or any custom script. It allows users to define complex workflows that involve multiple data processing steps. Amazon Redshift, on the other hand, is primarily focused on data analysis and provides optimized SQL query execution for analytical workloads. It uses parallel query processing and columnar storage to efficiently process large amounts of data.

  5. Cost: Airflow is an open-source project with no licensing costs. However, deploying and managing Airflow requires infrastructure resources, which may incur costs. Amazon Redshift is a cloud-based service that charges users based on their usage, including data storage and query processing. The cost of using Amazon Redshift depends on factors such as the amount of data stored, the number of queries executed, and the compute resources used.

  6. Infrastructure: Airflow can be deployed on-premises or in the cloud, depending on the user's requirements. It can be set up on any infrastructure that supports Python and the required dependencies. Amazon Redshift, on the other hand, is a fully managed service provided by Amazon Web Services (AWS). It takes care of the underlying infrastructure, including hardware provisioning, software installation, and maintenance tasks.

In summary, Airflow is a scalable workflow management platform that focuses on orchestrating complex data pipelines, while Amazon Redshift is a scalable cloud-based data warehousing service optimized for data analytics. Airflow does not provide built-in data storage capabilities, whereas Amazon Redshift includes its own data storage solution. Airflow can be used for data processing tasks on various platforms, while Amazon Redshift excels in running complex SQL queries on large datasets. The cost of using Airflow depends on infrastructure resources, while Amazon Redshift charges based on data storage and query processing usage. Airflow can be deployed on-premises or in the cloud, while Amazon Redshift is a fully managed service provided by AWS.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon Redshift, Airflow

datocrats-org
datocrats-org

Jul 29, 2020

Needs adviceonAmazon EC2Amazon EC2TableauTableauPowerBIPowerBI

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

319k views319k
Comments
Anonymous
Anonymous

Jan 19, 2020

Needs advice

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

294k views294k
Comments

Detailed Comparison

Amazon Redshift
Amazon Redshift
Airflow
Airflow

It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.;Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.;No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.;Fault Tolerant- Amazon Redshift has multiple features that enhance the reliability of your data warehouse cluster. All data written to a node in your cluster is automatically replicated to other nodes within the cluster and all data is continuously backed up to Amazon S3.;SQL - Amazon Redshift is a SQL data warehouse and uses industry standard ODBC and JDBC connections and Postgres drivers.;Isolation - Amazon Redshift enables you to configure firewall rules to control network access to your data warehouse cluster.;Encryption – With just a couple of parameter settings, you can set up Amazon Redshift to use SSL to secure data in transit and hardware-acccelerated AES-256 encryption for data at rest.<br>
Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.;Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.;Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.;Scalable: Airflow has a modular architecture and uses a message queue to talk to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Statistics
Stacks
1.5K
Stacks
1.7K
Followers
1.4K
Followers
2.8K
Votes
108
Votes
128
Pros & Cons
Pros
  • 41
    Data Warehousing
  • 27
    Scalable
  • 17
    SQL
  • 14
    Backed by Amazon
  • 5
    Encryption
Pros
  • 53
    Features
  • 14
    Task Dependency Management
  • 12
    Beautiful UI
  • 12
    Cluster of workers
  • 10
    Extensibility
Cons
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Observability is not great when the DAGs exceed 250
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward
Integrations
SQLite
SQLite
MySQL
MySQL
Oracle PL/SQL
Oracle PL/SQL
No integrations available

What are some alternatives to Amazon Redshift, Airflow?

Google BigQuery

Google BigQuery

Run super-fast, SQL-like queries against terabytes of data in seconds, using the processing power of Google's infrastructure. Load data with ease. Bulk load your data using Google Cloud Storage or stream it in. Easy access. Access BigQuery by using a browser tool, a command-line tool, or by making calls to the BigQuery REST API with client libraries such as Java, PHP or Python.

Qubole

Qubole

Qubole is a cloud based service that makes big data easy for analysts and data engineers.

Amazon EMR

Amazon EMR

It is used in a variety of applications, including log analysis, data warehousing, machine learning, financial analysis, scientific simulation, and bioinformatics.

Altiscale

Altiscale

we run Apache Hadoop for you. We not only deploy Hadoop, we monitor, manage, fix, and update it for you. Then we take it a step further: We monitor your jobs, notify you when something’s wrong with them, and can help with tuning.

GitHub Actions

GitHub Actions

It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want.

Snowflake

Snowflake

Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.

Apache Beam

Apache Beam

It implements batch and streaming data processing jobs that run on any execution engine. It executes pipelines on multiple execution environments.

Stitch

Stitch

Stitch is a simple, powerful ETL service built for software developers. Stitch evolved out of RJMetrics, a widely used business intelligence platform. When RJMetrics was acquired by Magento in 2016, Stitch was launched as its own company.

Zenaton

Zenaton

Developer framework to orchestrate multiple services and APIs into your software application using logic triggered by events and time. Build ETL processes, A/B testing, real-time alerts and personalized user experiences with custom logic.

Azure Synapse

Azure Synapse

It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase