Need advice about which tool to choose?Ask the StackShare community!

Alation

5
15
+ 1
0
AWS Glue

289
519
+ 1
6
Add tool

AWS Glue vs Alation: What are the differences?

What is AWS Glue? Fully managed extract, transform, and load (ETL) service. A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics.

What is Alation? Enterprise Data Catalog & Data Governance. The leader in collaborative data cataloging, it empowers analysts & information stewards to search, query & collaborate for fast and accurate insights.

AWS Glue and Alation are primarily classified as "Big Data" and "Analytics Integrator" tools respectively.

Some of the features offered by AWS Glue are:

  • Easy - AWS Glue automates much of the effort in building, maintaining, and running ETL jobs. AWS Glue crawls your data sources, identifies data formats, and suggests schemas and transformations. AWS Glue automatically generates the code to execute your data transformations and loading processes.
  • Integrated - AWS Glue is integrated across a wide range of AWS services.
  • Serverless - AWS Glue is serverless. There is no infrastructure to provision or manage. AWS Glue handles provisioning, configuration, and scaling of the resources required to run your ETL jobs on a fully managed, scale-out Apache Spark environment. You pay only for the resources used while your jobs are running.

On the other hand, Alation provides the following key features:

  • Data Catalog
  • Automatically indexes your data by source
  • Automatically gathers knowledge about your data
Advice on Alation and AWS Glue

We need to perform ETL from several databases into a data warehouse or data lake. We want to

  • keep raw and transformed data available to users to draft their own queries efficiently
  • give users the ability to give custom permissions and SSO
  • move between open-source on-premises development and cloud-based production environments

We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.

See more
Replies (3)

You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.

But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

See more
Recommends
Airflow

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.

See more
Recommends

You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.

See more
Vamshi Krishna
Data Engineer at Tata Consultancy Services · | 4 upvotes · 93.6K views

I have to collect different data from multiple sources and store them in a single cloud location. Then perform cleaning and transforming using PySpark, and push the end results to other applications like reporting tools, etc. What would be the best solution? I can only think of Azure Data Factory + Databricks. Are there any alternatives to #AWS services + Databricks?

See more

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 4 upvotes · 76.7K views
Recommends
Amazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
Amazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Alation
Pros of AWS Glue
    Be the first to leave a pro
    • 6
      Managed Hive Metastore

    Sign up to add or upvote prosMake informed product decisions

    Sign up to add or upvote consMake informed product decisions

    What is Alation?

    The leader in collaborative data cataloging, it empowers analysts & information stewards to search, query & collaborate for fast and accurate insights.

    What is AWS Glue?

    A fully managed extract, transform, and load (ETL) service that makes it easy for customers to prepare and load their data for analytics.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Alation?
    What companies use AWS Glue?
      No companies found
      See which teams inside your own company are using Alation or AWS Glue.
      Sign up for Private StackShareLearn More

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Alation?
      What tools integrate with AWS Glue?
        No integrations found

        Sign up to get full access to all the tool integrationsMake informed product decisions

        Blog Posts

        Aug 28 2019 at 3:10AM

        Segment

        +16
        5
        2107
        What are some alternatives to Alation and AWS Glue?
        Google Tag Manager
        Tag Manager gives you the ability to add and update your own tags for conversion tracking, site analytics, remarketing, and more. There are nearly endless ways to track user behavior across your sites and apps, and the intuitive design lets you change tags whenever you want.
        Segment
        Segment is a single hub for customer data. Collect your data in one place, then send it to more than 100 third-party tools, internal systems, or Amazon Redshift with the flip of a switch.
        Apache Spark
        Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
        Splunk
        It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
        Apache Flink
        Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.
        See all alternatives